Exercice 1. Théorème de complétude

Question 1 – On fixe la formule logique A et on montre le résultat par récurrence sur $n \in \mathbb{N}$.

<u>Initialisation.</u> Pour n = 0, on remarque que :

$$V_0 = \emptyset$$
 $|D_0| = 1$ $\forall \mu \in D_n : \Gamma_{\mu} = \emptyset.$

Soit μ le seul élément de D_0 . Si on suppose $\Gamma_{\mu} \vdash A$, on a directement $\varnothing \vdash A$, c'est à dire $\vdash A$.

<u>Hérédité.</u> On suppose la propriété vraie au rang $n \in \mathbb{N}$ et on la montre au rang n+1. Supposons $\Gamma_{\mu} \vdash A$ pour tout $\mu \in D_{n+1}$. Par l'hypothèse de récurrence, il nous suffit de montrer $\Gamma_{\mu} \vdash A$ pour tout $\mu \in D_n$.

Soit $\mu \in D_n$. On note $\mu_0 \in D_{n+1}$ et $\mu_1 \in D_{n+1}$ les distributions de vérités définies par :

$$\begin{cases} \mu_0(v_{n+1}) = 0 \\ \forall i \in [1, n] : \mu_0(v_i) = \mu(v_i) \end{cases} \qquad \begin{cases} \mu_1(v_{n+1}) = 1 \\ \forall i \in [1, n] : \mu_1(v_i) = \mu(v_i) \end{cases}$$

Par hypothèse, il existe un arbre de preuve A_0 pour le séquent $\Gamma_{\mu_0} \vdash A$ et un arbre de preuve A_1 pour le séquent $\Gamma_{\mu_1} \vdash A$. De plus, on a :

$$\Gamma_{\mu_0} = \Gamma_{\mu} \cup \{\neg v_{n+1}\} \qquad \qquad \Gamma_{\mu_1} = \Gamma_{\mu} \cup \{v_{n+1}\}$$

Construisons un arbre de preuve pour le séquent $\Gamma_{\mu} \vdash A$:

$$\frac{\mathcal{A}_1}{\Gamma_{\mu}, v_{n+1} \vdash A} \quad \frac{\mathcal{A}_0}{\Gamma_{\mu}, \neg v_{n+1} \vdash A}$$
 te

Ainsi, pour tout $\mu \in D_n$, le séquent $\Gamma_{\mu} \vdash A$ est prouvable. Par hypothèse de récurrence, le séquent $\vdash A$ est donc prouvable.

 ${\bf Question} \ {\bf 2} - \ {\bf On} \ {\bf remarque} \ {\bf que} :$

- Si |F| = 1, alors $F = \bot$ ou F = v avec v une variable propositionnelle.
- Si |F| > 1, alors $F = \neg F_1$ ou $F = F_1 \land F_2$ ou $F = F_1 \lor F_2$ ou $F = F_1 \to F_2$ avec F_1 et F_2 des formules logiques telles que $|F_1| < |F|$ et $|F_2| < |F|$.

Soit $n \in \mathbb{N}$ et $k \in \mathbb{N}^*$. Supposons la propriété vraie pour toute formule F' telle que |F'| < k et montrons la pour une formule F telle que |F| = k.

* Si $F = \bot$, alors pour tout $\mu \in D_n$, on a $E_{\mu}(F) = 0$ et donc $\Gamma_{\mu} \vdash \neg F$ est bien prouvable :

$$\frac{\overline{\Gamma_{\mu}, F \vdash \bot}}{\Gamma_{\mu} \vdash \neg F} \stackrel{\text{ax}}{\neg_i}$$

* On suppose que F = v avec v une variable propositionnelle. Pour tout $\mu \in D_n$, par définition de Γ_{μ} :

$$\begin{cases} \text{Si } E_{\mu}(v) = 0, \text{ alors } \neg v \in \Gamma_{\mu}, \text{ donc } \Gamma_{\mu} \vdash \neg F \text{ est prouvable en appliquant la règle de l'axiome.} \\ \text{Si } E_{\mu}(v) = 1, \text{ alors } v \in \Gamma_{\mu}, \text{ donc } \Gamma_{\mu} \vdash F \text{ est prouvable en appliquant la règle de l'axiome.} \end{cases}$$

* On suppose que $F = \neg F_1$ et que $E_{\mu}(F) = 0$ (resp. $E_{\mu}(F) = 1$). Alors, par définition de E_{μ} , on a $E_{\mu}(F_1) = 1$ (resp. $E_{\mu}(F_1) = 0$). Par l'hypothèse de récurrence, il existe un arbre de preuve \mathcal{A} pour $\Gamma_{\mu} \vdash F_1$ (resp. $\Gamma_{\mu} \vdash \neg F_1$). Construisons un arbre de preuve pour $\Gamma_{\mu} \vdash \neg \neg F_1$ (resp. $\Gamma_{\mu} \vdash \neg F_1$):

$$\frac{\frac{\mathcal{A}}{\Gamma_{\mu} \vdash F_{1}}}{\frac{\Gamma_{\mu}, \neg F_{1} \vdash F_{1}}{\Gamma_{\mu}, \neg F_{1} \vdash \bot}} \underset{\neg e}{\text{as}} \frac{\mathcal{A}}{\Gamma_{\mu} \vdash \neg F_{1}} \xrightarrow{\neg e} \frac{\mathcal{A}}{\Gamma_{\mu} \vdash \neg F_{1}}$$

* On suppose que $F = F_1 \wedge F_2$ et que $E_{\mu}(F) = 0$. Alors, par définition de E_{μ} , on a $E_{\mu}(F_1) = 0$ ou $E_{\mu}(F_2) = 0$. On traite le cas où $E_{\mu}(F_1) = 0$ (l'autre cas est symétrique). Par l'hypothèse de récurrence, il existe un arbre de preuve \mathcal{A} pour $\Gamma_{\mu} \vdash \neg F_1$. Construisons un arbre de preuve pour $\Gamma_{\mu} \vdash \neg (F_1 \land F_2)$:

$$\frac{\frac{\mathcal{A}}{\Gamma_{\mu}, F_{1} \wedge F_{2} \vdash F_{1} \wedge F_{2}}}{\frac{\Gamma_{\mu}, F_{1} \wedge F_{2} \vdash F_{1}}{\Gamma_{\mu}, F_{1} \wedge F_{2} \vdash F_{1}}} \underset{\neg_{e}}{\text{aff}} \frac{\mathcal{A}}{\Gamma_{\mu} \vdash \neg F_{1}} \underset{\neg_{e}}{\text{aff}}$$

 \star On suppose que $F=F_1 \wedge F_2$ et que $E_{\mu}(F)=1$. Alors, par définition de E_{μ} , on a $E_{\mu}(F_1)=1$ et $E_{\mu}(F_2) = 1$. Par l'hypothèse de récurrence, il existe un arbre de preuve A_1 pour $\Gamma_{\mu} \vdash F_1$ et un arbre de preuve A_2 pour $\Gamma_{\mu} \vdash F_2$. Construisons un arbre de preuve pour $\Gamma_{\mu} \vdash F_1 \land F_2$:

$$\frac{\mathcal{A}_1}{\frac{\Gamma_{\mu} \vdash F_1}{\Gamma_{\mu} \vdash F_2}} \frac{\mathcal{A}_1}{\frac{\Gamma_{\mu} \vdash F_2}{\Gamma_{\mu} \vdash F_1 \land F_2}} \land_i$$

 \star On suppose que $F = F_1 \vee F_2$ et que $E_{\mu}(F) = 0$. Alors, par définition de E_{μ} , on a $E_{\mu}(F_1) = 0$ et $E_{\mu}(F_2) = 0$. Par l'hypothèse de récurrence, il existe un arbre de preuve A_1 pour $\Gamma_{\mu} \vdash \neg F_1$ et un arbre de preuve A_2 pour $\Gamma_{\mu} \vdash \neg F_2$. Construisons un arbre de preuve pour $\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)$:

reuve
$$A_2$$
 pour $\Gamma_{\mu} \vdash \neg F_2$. Construisons un arbre de preuve pour $\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)$:
$$\frac{A_1}{\Gamma_{\mu} \vdash \neg F_1} \text{ aff}$$

$$\frac{A_1}{\Gamma_{\mu}, F_1 \lor F_2 \vdash \neg F_1} \text{ aff}$$

$$\frac{\Gamma_{\mu}, F_1 \lor F_2, F_1 \vdash \neg F_1}{\Gamma_{\mu}, F_1 \lor F_2, F_1 \vdash \bot} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2, F_1 \vdash \neg F_1}{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F_2 \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_1 \lor F_2)} \xrightarrow{\neg e} \frac{\Gamma_{\mu}, F_1 \lor F$$

* On suppose que $F = F_1 \vee F_2$ et que $E_{\mu}(F) = 1$. Alors, par définition de E_{μ} , on a $E_{\mu}(F_1) = 1$ ou $E_{\mu}(F_2) = 1$. On traite le cas où $E_{\mu}(F_1) = 1$ (l'autre cas est symétrique). Par l'hypothèse de récurrence, il existe un arbre de preuve \mathcal{A} pour $\Gamma_{\mu} \vdash F_1$. Construisons un arbre de preuve pour $\Gamma_{\mu} \vdash F_1 \lor F_2$:

$$\frac{\frac{\mathcal{A}}{\Gamma_{\mu} \vdash F_1}}{\Gamma_{\mu} \vdash F_1 \lor F_2} \lor_i^g$$

 \star On suppose que $F=F_1 \to F_2$ et que $E_{\mu}(F)=0$. Alors, par définition de E_{μ} , on a $E_{\mu}(F_1)=1$ et $E_{\mu}(F_2)=0$. Par l'hypothèse de récurrence, il existe un arbre de preuve \mathcal{A}_1 pour $\Gamma_{\mu}\vdash F_1$ et un arbre de preuve A_2 pour $\Gamma_{\mu} \vdash \neg F_2$. Construisons un arbre de preuve pour $\Gamma_{\mu} \vdash \neg (F_1 \to F_2)$:

$$\frac{\frac{\mathcal{A}_{1}}{\Gamma_{\mu} \vdash F_{1}}}{\frac{\Gamma_{\mu}, F_{1} \to F_{2} \vdash F_{1}}{\Gamma_{\mu}, F_{1} \to F_{2} \vdash F_{2}}} \xrightarrow{\text{ax}} \frac{\mathcal{A}_{2}}{\Gamma_{\mu} \vdash \neg F_{2}} \xrightarrow{\text{aff}} \frac{\Gamma_{\mu}, F_{1} \to F_{2} \vdash F_{2}}{\Gamma_{\mu}, F_{1} \to F_{2} \vdash \bot} \xrightarrow{\neg_{e}} \frac{\Gamma_{\mu}, F_{1} \to F_{2} \vdash \bot}{\Gamma_{\mu} \vdash \neg (F_{1} \to F_{2})} \xrightarrow{\neg_{e}}$$

 \star On suppose que $F=F_1 \to F_2$ et que $E_\mu(F)=1$. Alors, par définition de E_μ , on a $E_\mu(F_1)=0$ ou $E_{\mu}(F_2) = 1$. Par l'hypothèse de récurrence, il existe un arbre de preuve A_1 pour $\Gamma_{\mu} \vdash \neg F_1$ ou bien un arbre de preuve \mathcal{A}_2 pour $\Gamma_\mu \vdash F_2$. Dans les deux cas, construisons un arbre de preuve pour $\Gamma_\mu \vdash F_1 \to F_2$:

$$\frac{\frac{\mathcal{A}_{1}}{\Gamma_{\mu} \vdash \neg F_{1}}}{\frac{\Gamma_{\mu}, F_{1} \vdash \neg F_{1}}{\Gamma_{\mu}, F_{1}, \neg F_{2} \vdash \neg F_{1}}} \text{ aff } \frac{\mathcal{A}_{2}}{\Gamma_{\mu}, F_{1}, \neg F_{2} \vdash F_{1}} \text{ ax}}{\frac{\Gamma_{\mu}, F_{1}, \neg F_{2} \vdash \bot}{\Gamma_{\mu}, F_{1}, \neg F_{2} \vdash \bot}} \xrightarrow{\neg_{e}} \frac{\mathcal{A}_{2}}{\Gamma_{\mu}, F_{1} \vdash F_{2}} \text{ aff } \frac{\Gamma_{\mu}, F_{1} \vdash F_{2}}{\Gamma_{\mu} \vdash F_{1} \rightarrow F_{2}} \xrightarrow{\neg_{e}} \frac{\mathcal{A}_{2}}{\Gamma_{\mu}, F_{1} \vdash F_{2}} \xrightarrow{\neg_{e}} \frac{\mathcal{A}_{2}}{\Gamma_{\mu}, F_{1} \vdash F_{2}} \xrightarrow{\neg_{e}} \xrightarrow{\Gamma_{\mu}, F_{1} \vdash F_{2}} \xrightarrow{\neg_{e}} \xrightarrow{\Gamma_{\mu}, F_{1} \vdash F_{2}} \xrightarrow{\neg_{e}} \frac{\mathcal{A}_{2}}{\Gamma_{\mu}, F_{1} \vdash F_{2}} \xrightarrow{\neg_{e}} \xrightarrow{\Gamma_{\mu}, F_{1} \vdash F_{2}} \xrightarrow{\Gamma_{\mu}, F_{1} \vdash F_{2}}} \xrightarrow{\Gamma_{\mu}, F_{1} \vdash F_{2}} \xrightarrow{\Gamma_{\mu}, F_{1} \vdash F_{2}} \xrightarrow{\Gamma_{\mu}, F_{1} \vdash F_{2}} \xrightarrow{\Gamma_{\mu}, F_{$$

Question 3 – Soit F une tautologie et $n \in \mathbb{N}$ un entier tel que toutes les variables propositionnelles de F appartiennent à V_n . Pour tout $\mu \in D_n$, si on note $\mu' : V \to \{0,1\}$ une distribution de vérité dont μ est la restriction à V_n , alors $E_{\mu}(F) = E_{\mu'}(F) = 1$. D'après la question $2 : \Gamma_{\mu} \vdash F$. D'après la question $1, \vdash F$ est prouvable.

Question 4 — On le montre par récurrence sur k.

Initialisation. Pour k = 1, on suppose disposer d'un arbre de preuve \mathcal{A} pour $\Gamma \vdash A_1$ et d'un arbre de preuve \mathcal{B} pour $\Gamma, A_1 \vdash A$. Montrons $\Gamma \vdash A$:

$$\frac{\mathcal{A}}{\Gamma \vdash A_1} \quad \frac{\frac{\mathcal{B}}{\Gamma, A_1 \vdash A}}{\Gamma \vdash A_1 \to A} \to_i \\ \frac{\Gamma \vdash A}{\Gamma \vdash A} \to_e$$

<u>Hérédité.</u> Soit $k \ge 1$ tel que $\vee_{e,k}$ est admissible. Montrons que $\vee_{e,k+1}$ est admissible. On suppose disposer d'un arbre de preuve \mathcal{A} pour $\Gamma \vdash Disj(A_1, \ldots, A_{k+1})$ et de k+1 arbres de preuves \mathcal{B}_i pour $\Gamma, A_i \vdash A$ où $i \in [1, k+1]$. Montrons que $\Gamma \vdash A$ est prouvable :

$$\frac{\mathcal{A}}{\Gamma \vdash Disj(A_1, \dots, A_k) \lor A_{k+1}} \quad \frac{\mathcal{C}}{\Gamma_1 \vdash A} \quad \frac{\mathcal{B}_{k+1}}{\Gamma, A_{k+1} \vdash A} \lor_e$$

où $\Gamma_1 = \Gamma \cup \{Disj(A_1, \dots, A_k)\}\$ et \mathcal{C} l'arbre :

$$\frac{\frac{\mathcal{B}_1}{\Gamma_1 \vdash Disj(A_1, \dots, A_k)} \text{ ax } \frac{\frac{\mathcal{B}_1}{\Gamma, A_1 \vdash A} \text{ aff } \dots \frac{\frac{\mathcal{B}_k}{\Gamma, A_k \vdash A}}{\Gamma_1, A_1 \vdash A} \text{ aff } \dots \frac{\frac{\mathcal{B}_k}{\Gamma, A_k \vdash A}}{\Gamma_1, A_k \vdash A} \vee_{e,k}$$

Question 5 – Supposons F valide dans T et posons $T' = T \cup \{\neg F\}$. Comme F est valide dans T, la théorie T' n'admet pas de modèle. Par le théorème de compacité, il existe $\Gamma' \subset T'$ fini tel que Γ' n'admet pas de modèle. Notons A_1, \ldots, A_k les éléments de Γ' .

Comme Γ' n'admet pas de modèle, pour toute distribution de vérité μ , il existe $i \in [1, k]$ tel que $E_{\mu}(A_i) = 0$. Ainsi, par définition de E_{μ} :

$$E_{\mu}\left(Disj(\neg A_1,\ldots,\neg A_k)\right)=1$$

En d'autres termes la formule $Disj(\neg A_1, \dots, \neg A_k)$ est une tautologie. Par la question 3, il existe un arbre de preuve \mathcal{A} pour $\vdash Disj(\neg A_1, \dots, \neg A_k)$.

Soit $\Gamma = \Gamma' \setminus \{\neg F\}$ (si $\neg F \notin \Gamma'$ alors $\Gamma = \Gamma'$). Construisons maintenant un arbre de preuve pour $\Gamma \vdash F$ ce qui conclura la démonstration :

$$\frac{\frac{\mathcal{A}}{\vdash Disj(\neg A_1, \dots, \neg A_k)}}{\frac{\Gamma \vdash Disj(\neg A_1, \dots, \neg A_k)}{\Gamma \vdash F}} \text{ aff } \frac{\mathcal{A}_1}{\Gamma, \neg A_1 \vdash F} \dots \frac{\mathcal{A}_k}{\Gamma, \neg A_k \vdash F}$$

Il reste à construire les arbres A_i . Si $A_i = \neg F$, alors l'arbre suivant convient :

$$\frac{\Gamma_1 \vdash \neg F}{\Gamma_1 \vdash \neg \neg F} \xrightarrow{\text{ax}} \frac{\Gamma_1 \vdash \neg \neg F}{\neg e} \xrightarrow{\neg e} \text{avec } \Gamma_1 = \Gamma \cup \{\neg \neg F, \neg F\}.$$

Sinon $A_i \neq \neg F$, donc $A_i \in \Gamma$ et l'arbre suivant convient :

$$\frac{\overline{\Gamma_2 \vdash A_i} \text{ ax}}{\frac{\Gamma_2 \vdash \bot}{\Gamma, \neg A_i \vdash F}} \stackrel{\text{ax}}{\neg_e} \quad \text{avec } \Gamma_2 = \Gamma \cup \{\neg A_i, \neg F\}.$$

Question 6 – On le montre par double implication.

 (\Rightarrow) Supposons $T \vdash \bot$. Le théorème de correction sit pule que \bot est valide dans T, c'est à dire que pour tout $\mu \in D$:

Si
$$\mu$$
 est un modèle de T , alors $E_{\mu}(\perp) = 1$.

Or $E_{\mu}(\perp) = 0$ par définition de E_{μ} . Ainsi, T n'admet pas de modèle.

(\Leftarrow) On montre la contraposée. Si $T \nvdash \bot$, alors d'après le théorème de complétude, \bot n'est pas valide dans T. Par définition de "valide" :

Il existe un modèle
$$\mu$$
 de T tel que $E_{\mu}(\perp) = 0$

En particulier, T admet un modèle.

Question 7 – Montrons que T = V convient. Pour cela on utilise les question 2 et 6 :

- \rightarrow Soit μ la distribution de vérité telle que $\mu(v)=1$ pour tout V. On remarque que μ est un modèle de T, donc $T \not\vdash \bot$ par la question 6.
- → Soit F une formule logique et $n \in \mathbb{N}$ un entier tel que toutes les variables propositionnelles de F sont dans V_n . Soit μ la distribution de vérité telle que $\mu(v) = 1$ pour tout $v \in V_n$, alors $E_{\mu}(F) \in \{0,1\}$. Par la question 2, on a $\Gamma_{\mu} \vdash F$ ou $\Gamma_{\mu} \vdash \neg F$. Puisque $\Gamma_{\mu} \subset T$, on obtient $T \vdash F$ ou $T \vdash \neg F$.

Exercice 2. Théorème de compacité

Question 1 – On suppose par l'absurde que $T \cup \{v\}$ et $T \cup \{\neg v\}$ ne sont pas FS. Par définition, il existe $\Gamma_1 \subset T \cup \{v\}$ et $\Gamma_2 \subset T \cup \{\neg v\}$ des ensembles finis n'admettant pas de modèle. Comme T est FS, on a $v \in \Gamma_1$ et $\neg v \in \Gamma_2$. On pose :

$$\Gamma_1' = \Gamma_1 \setminus \{v\} \subset T$$
 et $\Gamma_2' = \Gamma_2 \setminus \{\neg v\} \subset T$

Soit μ un modèle de $\Gamma'_1 \cup \Gamma'_2$. Si $\mu(v) = 0$, alors μ est un modèle de $\Gamma'_1 \cup \Gamma'_2 \cup \{\neg v\}$ et donc un modèle de Γ_2 . Sinon, $\mu(v) = 1$ et donc μ est un modèle de Γ_1 . Dans les deux cas, on a une contradiction avec l'hypothèse de départ.

Question 2 – On définit une suite de théories $(T_k)_{k\in\mathbb{N}}$ par récurrence sur k. On pose $T_0=T$ et pour tout $k\geqslant 0$:

$$T_{k+1} = \begin{cases} T_k \cup \{v_k\} \text{ si } T_k \cup \{v_k\} \text{ est FS} \\ T_k \cup \{\neg v_k\} \text{ sinon} \end{cases}$$

D'après la question précédente, T_k est FS pour tout k. On pose :

$$T' = \bigcup_{k \in \mathbb{N}} T_k.$$

Il est clair que $T \subset T'$ et que pour toute variable $v \in V$, on a $v \in T'$ ou $\neg v \in T'$. Il reste à montrer que T' est FS. Soit $\Gamma \subset T'$ fini. Comme Γ est fini et que $T_0 \subset T_1 \subset T_2 \subset \ldots$, il existe $k_0 \in \mathbb{N}$ tel que $\Gamma \subset T_{k_0}$. Puisque T_{k_0} est FS, il existe un modèle de Γ .

Question 3 – On définit T' la théorie de la question précédente. Remarquons que si $v \in T'$, alors $\neg v \notin T'$. En effet, dans le cas contraire, on aurait $\{v, \neg v\} \subset T'$, ce qui contredit le fait que T' est FS en prenant $\Gamma = \{v, \neg v\}$.

Soit μ la distribution de vérité définie par :

$$\forall v \in V : \mu(v) = \begin{cases} 1 \text{ si } v \in T' \\ 0 \text{ si } \neg v \in T' \end{cases}$$

Montrons que μ est un modèle de T. Soit $F \in T$ et $k \in \mathbb{N}$ tel que toutes les variables de F appartiennent à $\{v_1, \ldots, v_k\}$. Pour tout $i \in [1, k]$, on pose :

$$\ell_i = \begin{cases} v_i \text{ si } v_i \in T' \\ \neg v_i \text{ si } \neg v_i \in T' \end{cases}$$

Alors $\Gamma = \{F, \ell_1, \ell_2, \dots, \ell_k\} \subset T'$ est fini et admet donc un modèle μ' . À cause de la présence des ℓ_i , μ et μ' coïncident sur v_1, \dots, v_k . Ainsi :

$$E_{\mu}(F) = E_{\mu'}(F) = 1$$

Exercice 3. Admissibilité de la règle d'affaiblissement

Supposons qu'il existe un arbre de preuve \mathcal{A} pour le séquent $\Gamma \vdash A$ et construisons un arbre de preuve pour $\Gamma, B \vdash A$. On le montre par récurrence sur la hauteur de \mathcal{A} .

Initialisation. Si A est de hauteur 0, alors A est de la forme :

$$\frac{}{\Gamma \vdash A}$$
 ax

Ce qui signifie que $A \in \Gamma$. Comme $A \in \Gamma \cup \{B\}$:

$$\overline{\Gamma, B \vdash A}$$
 ax est un arbre de preuve pour $\Gamma, B \vdash A$.

Hérédité. Sinon, A est de la forme :

$$\frac{\mathcal{B}_1}{\frac{\Gamma_1 \vdash A_1}{\Gamma_1 \vdash A}} \quad \frac{\mathcal{B}_2}{\frac{\Gamma_2 \vdash A_2}{\Gamma_1 \vdash A}} \quad \cdots \quad \frac{\mathcal{B}_n}{\frac{\Gamma_n \vdash A_n}{\Gamma_n \vdash A_n}} r$$

avec r la règle utilisée à la racine de \mathcal{A} et $\mathcal{B}_1, \ldots, \mathcal{B}_n$ des arbres de preuve. Pour tout $i \in [\![1,n]\!]$, l'hypothèse de récurrence assure l'existence d'un arbre de preuve \mathcal{C}_i pour le séquent $\Gamma, B \vdash A_i$. Voici un arbre de preuve \mathcal{A}' pour $\Gamma, B \vdash A$:

$$\frac{\mathcal{C}_1}{\frac{\Gamma_1, B \vdash A_1}{\Gamma_2, B \vdash A_2}} \frac{\mathcal{C}_2}{\Gamma_2, B \vdash A_2} \cdots \frac{\mathcal{C}_n}{\Gamma_n, B \vdash A_n} r$$

Pour écrire ce qui précède, on a vérifié exhaustivement pour les 11 règles de la logique classique (sauf l'affaiblissement et l'axiome) que si r est appliquée correctement à la racine de \mathcal{A} , alors r est appliquée correctement à la racine de \mathcal{A}' .

Exercice 4. Arbres de décision (concours X/ENS 1999)

Question 1 – Pour π_0 :

Pour $\neg \pi_1$:

Pour $\pi_0 \wedge \neg \pi_1$, $\neg \pi_1 \wedge \pi_0$ et $\neg(\pi_0 \Rightarrow \pi_1)$, on obtient trois fois le même arbre :

Question 2 -

Idée. Dans un arbre de décision différent de \top , il y a au moins un \bot . En effet, il suffit de considérer un nœud interne de profondeur maximale, alors d'après la condition (C 2.1), l'un des fils est \top et l'autre est \bot . On considère alors un chemin de la racine vers l'une des feuilles étiquetée par \bot . Lorsqu'on rencontre un b_i dans ce chemin, on pose $b_i = 1$ si le chemin va dans le sous-arbre gauche, et $b_i = 0$ sinon. D'après la condition (C 2.2), chaque b_i est rencontré au plus une fois. Les b_i qui ne se trouvent pas sur le chemin peuvent prendre une valeur arbitraire. Soit g la fonction représentée par l'arbre A. Lorsque les b_i prennent les valeurs décrites ci-dessus, on a $g(b_0, \ldots, b_{n-1}) = 0$ et donc g n'est pas constante égale à 1.

Preuve formelle. Montrons par récurrence forte décroissante finie sur $i \in [0, n-1]$ que pour tout arbre A dont la racine est étiquetée par b_i , il existe $b_i, b_{i+1}, \ldots, b_{n-1} \in \mathcal{B}$ tels que pour tout $b_0, \ldots, b_{i-1} \in \mathcal{B}$:

$$g(b_0,\ldots,b_{n-1})=0$$

où $g: \mathcal{B}^n \to \mathcal{B}$ est la fonction booléenne représentée par A. Dans la suite, on note v et f les sous-arbres gauche et droit de A, ainsi que g, g' et g'' les fonctions représentées par A, v et f.

Soit $i \in [0, n-1]$. On suppose la proposition vraie pour tout rang j > i et on la montre au rang i.

• Si $v = \bot$, alors on pose $b_i = 1$ et $b_{i+1} = b_{i+2} = \ldots = b_{n-1} = 0$ (en fait ces booléens peuvent être quelconques). On a alors :

$$q(b_0,\ldots,b_{n-1}) = test(\pi_i,q',q'')(b_0,\ldots,b_{n-1}) = q'(b_0,\ldots,b_{n-1}) = 0$$

- Si $f = \bot$, on procède comme dans le cas précédente en posant $b_i = 0$.
- Si $v \neq \bot$ et $v \neq \top$, soit $j \in [i+1, n-1]$ tel que la racine de v est étiquetée par b_j . D'après l'hypothèse de récurrence, il existe b_j, \ldots, b_{n-1} tels que pour tout b_0, \ldots, b_{j-1} , on a $g'(b_0, \ldots, b_{n-1}) = 0$. On pose alors $b_i = 1$ et $b_{i+1} = \ldots = b_{j-1} = 0$ (en fait ces booléens peuvent être quelconques). Alors pour tout b_0, \ldots, b_{i-1} , on a bien $g(b_0, \ldots, b_{n-1}) = g'(b_0, \ldots, b_{n-1}) = 0$.
- Sinon $v = \top$ et $f \neq \bot$. D'après la condition (C 2.1), on a aussi $f \neq \top$. On procède comme dans le cas précédent en posant $b_i = 0$.

En conclusion, il n'existe pas d'arbre de hauteur $h \geqslant 1$ représentant la fonction constante égale à 1. L'arbre réduit à la feuille \perp ne représente pas non plus la fonction constante égale à 1 d'où la proposition.

Question 3 – On remarque que l'égalité $g_{i\leftarrow 0}=g_{i\leftarrow 1}$ est équivalente à dire que la fonction g ne dépend pas de la variable b_i . En effet, si $g_{i\leftarrow 0}=g_{i\leftarrow 1}$ alors pour tout $b_0,\ldots,b_{i-1},b_{i+1},\ldots,b_{n-1}$:

$$g(b_0, \dots, b_{i-1}, 0, b_{i+1}, \dots, b_{n-1}) = g_{i \leftarrow 0}(b_0, \dots, b_{i-1}, 0, b_{i+1}, \dots, b_{n-1})$$
$$= g_{i \leftarrow 1}(b_0, \dots, b_{i-1}, 0, b_{i+1}, \dots, b_{n-1})$$
$$= g(b_0, \dots, b_{i-1}, 1, b_{i+1}, \dots, b_{n-1})$$

En d'autres termes, pour tout b_0, \ldots, b_{n-1} et tout $x \in \mathcal{B}$:

$$g(b_0, \ldots, b_{i-1}, b_i, b_{i+1}, \ldots, b_{n-1}) = g(b_0, \ldots, b_{i-1}, x, b_{i+1}, \ldots, b_{n-1}).$$

Dans cette question, pour $i \in [0, n]$ on note G_i l'ensemble des fonctions $g : \mathcal{B}^n \to \mathcal{B}$ qui ne dépendent d'aucune variable b_j avec j < i. Il nous suffit donc de montrer que toutes les fonctions de G_0 sont représentables par un arbre de décision. Montrons par récurrence décroissante sur i que toutes les fonctions de G_i sont représentables par un arbre de décision ne contenant pas les variables b_0, \ldots, b_{i-1} .

<u>Initialisation.</u> Si i = n alors une fonction $g \in G_n$ ne dépend d'aucune des variables b_i . En d'autres termes, la fonction g est constante. Si elle est constante égale à 1, elle est représentable par l'arbre \top , sinon elle est constante égale à 0 donc elle est représentable par l'arbre \bot . Dans les deux cas, g est représentable par un arbre de décision ne contenant pas les variables b_0, \ldots, b_{n-1} .

<u>Hérédité.</u> Soit $i \in [0, n-1]$. On suppose la propriété vraie au rang i+1 et on la montre au rang i. Pour tout $g \in G_i$:

- Si $g_{i\leftarrow 0} = g_{i\leftarrow 1}$ alors la fonction g ne dépend pas de la variable b_i et donc $g \in G_{i+1}$. D'après l'hypothèse de récurrence, g est représentable par un arbre de décision ne contenant pas les variables b_0, \ldots, b_i . Ainsi, g est représentable par un arbre de décision ne contenant pas les variables b_0, \ldots, b_{i-1} .
- Sinon, les fonctions $g_{i\leftarrow 0}$ et $g_{i\leftarrow 1}$ ne dépendent pas de la variable b_i donc $g_{i\leftarrow 0}, g_{i\leftarrow 1} \in G_{i+1}$. D'après l'hypothèse de récurrence, $g_{i\leftarrow 0}$ est représentable par un arbre de décision f et $g_{i\leftarrow 1}$ est représentable par un arbre de décision v. On a $g_{i\leftarrow 0} \neq g_{i\leftarrow 1}$ donc $v \neq f$ et f et v ne contiennent pas les variables b_0, \ldots, b_i . Ainsi, l'arbre $A = test_{b_i}(v, f)$ est un arbre de décision ne contenant pas les variables b_0, \ldots, b_{i-1} .

Il reste à montrer que A représente la fonction g. Par définition, l'arbre A représente la fonction $test(\pi_i, g_{i\leftarrow 1}, g_{i\leftarrow 0})$. Or, pour tout $b_0, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n-1} \in \mathcal{B}$:

$$test(\pi_{i}, g_{i \leftarrow 1}, g_{i \leftarrow 0})(b_{0}, \dots, b_{i-1}, 0, b_{i+1}, \dots, b_{n-1}) = g_{i \leftarrow 0}(b_{0}, \dots, b_{i-1}, 0, b_{i+1}, \dots, b_{n-1})$$

$$= g(b_{0}, \dots, b_{i-1}, 0, b_{i+1}, \dots, b_{n-1}),$$

$$test(\pi_{i}, g_{i \leftarrow 1}, g_{i \leftarrow 0})(b_{0}, \dots, b_{i-1}, 1, b_{i+1}, \dots, b_{n-1}) = g_{i \leftarrow 1}(b_{0}, \dots, b_{i-1}, 1, b_{i+1}, \dots, b_{n-1})$$

$$= g(b_{0}, \dots, b_{i-1}, 1, b_{i+1}, \dots, b_{n-1}).$$

Donc l'arbre A représente bien la fonction g.

Question 4.a - On a :

$$g = (\neg \pi_i \land g_{i \leftarrow 0}) \lor (\pi_i \land g_{i \leftarrow 1}) \qquad \text{et} \qquad \neg g = (\neg \pi_i \land \neg g_{i \leftarrow 0}) \lor (\pi_i \land \neg g_{i \leftarrow 1})$$

Justifions l'égalité $g = (\neg \pi_i \land g_{i \leftarrow 0}) \lor (\pi_i \land g_{i \leftarrow 1})$. Soit $b = (b_0, \dots, b_{n-1}) \in \mathcal{B}^n$ quelconques. Si $b_i = 0$ alors :

$$\left[(\neg \pi_i \land g_{i \leftarrow 0}) \lor (\pi_i \land g_{i \leftarrow 1}) \right](b) = (\neg \pi_i(b) \land g_{i \leftarrow 0}(b)) \lor (\pi_i(b) \land g_{i \leftarrow 1}(b))
= (1 \land g_{i \leftarrow 0}(b)) \lor (0 \land g_{i \leftarrow 1}(b))
= g_{i \leftarrow 0}(b)
= g_{i \leftarrow 0}(b_0, \dots, b_{i-1}, 0, b_{i+1}, \dots, b_{n-1})
= g(b_0, \dots, b_{i-1}, 0, b_{i+1}, \dots, b_{n-1})
= g(b).$$

De même si $b_i = 1$.

L'égalité $\neg g = (\neg \pi_i \land \neg g_{i \leftarrow 0}) \lor (\pi_i \land \neg g_{i \leftarrow 1})$ se justifie de manière similaire.

Question 4.b - Montrons que :

$$test(g,g',g'') = test\Big(\pi_i, test(g_{i\leftarrow 1},g'_{i\leftarrow 1},g''_{i\leftarrow 1}), test(g_{i\leftarrow 0},g'_{i\leftarrow 0},g''_{i\leftarrow 0})\Big).$$

Soit $h: \mathcal{B}^n \to \mathcal{B}$ la fonction définie par l'égalité $h = (g \wedge g') \vee (\neg g \wedge g'')$. Montrons que h = test(g, g', g''). Soit $b \in \mathcal{B}^n$. Si g(b) = 0 alors :

$$h(b) = (0 \land g'(b)) \lor (1 \land g''(b)) = g''(b)$$

Sinon, g(b) = 1 donc :

$$h(b) = (1 \land g'(b)) \lor (0 \land g''(b)) = g'(b)$$

En comparant avec la définition de test(g, g', g''), on conclut que h = test(g, g', g''), c'est à dire :

$$test(g, g', g'') = (g \wedge g') \vee (\neg g \wedge g'').$$

D'après la question précédente :

$$g \wedge g' = \left[(\neg \pi_i \wedge g_{i \leftarrow 0}) \vee (\pi_i \wedge g_{i \leftarrow 1}) \right] \wedge \left[(\neg \pi_i \wedge g'_{i \leftarrow 0}) \vee (\pi_i \wedge g'_{i \leftarrow 1}) \right]$$
$$= (\neg \pi_i \wedge g_{i \leftarrow 0} \wedge g'_{i \leftarrow 0}) \vee (\pi_i \wedge g_{i \leftarrow 1} \wedge g'_{i \leftarrow 1})$$

et:

$$\neg g \land g'' = \left[(\neg \pi_i \land \neg g_{i \leftarrow 0}) \lor (\pi_i \land \neg g_{i \leftarrow 1}) \right] \land \left[(\neg \pi_i \land g''_{i \leftarrow 0}) \lor (\pi_i \land g''_{i \leftarrow 1}) \right]$$
$$= (\neg \pi_i \land \neg g_{i \leftarrow 0} \land g''_{i \leftarrow 0}) \lor (\pi_i \land \neg g_{i \leftarrow 1} \land g''_{i \leftarrow 1})$$

Finalement:

$$test(g, g', g'') = (\neg \pi_i \land g_{i \leftarrow 0} \land g'_{i \leftarrow 0}) \lor (\pi_i \land g_{i \leftarrow 1} \land g'_{i \leftarrow 1})$$

$$\lor (\neg \pi_i \land \neg g_{i \leftarrow 0} \land g''_{i \leftarrow 0}) \lor (\pi_i \land \neg g_{i \leftarrow 1} \land g''_{i \leftarrow 1})$$

$$= \left[\pi_i \land \left((g_{i \leftarrow 1} \land g'_{i \leftarrow 1}) \lor (\neg g_{i \leftarrow 1} \land g''_{i \leftarrow 1}) \right) \right]$$

$$\lor \left[\neg \pi_i \land \left((g_{i \leftarrow 0} \land g'_{i \leftarrow 0}) \lor (\neg g_{i \leftarrow 0} \land g''_{i \leftarrow 0}) \right) \right]$$

$$= \left[\pi_i \land test(g_{i \leftarrow 1}, g'_{i \leftarrow 1}, g''_{i \leftarrow 1}) \right] \lor \left[\neg \pi_i \land test(g_{i \leftarrow 0}, g'_{i \leftarrow 0}, g''_{i \leftarrow 0}) \right]$$

$$= test \left(\pi_i, test(g_{i \leftarrow 1}, g'_{i \leftarrow 1}, g''_{i \leftarrow 1}), test(g_{i \leftarrow 0}, g'_{i \leftarrow 0}, g''_{i \leftarrow 0}) \right)$$

Question 5 -

|| let abd_proj i = Test(i, Bool true, Bool false);;

Question 6.a -

```
let rec abd_neg = function
    | Bool b -> Bool (not b)
    | Test (i, v, f) -> Test (i, abd_neg v, abd_neg f);;
```

Question 6.b — Tout d'abord, la fonction abd_neg est injective. Pour le prouver, on utilise une récurrence forte sur la hauteur d'un arbre a pour montrer que pour tout arbre b, si (abd_neg a) est égal à (abd_neg b) alors a et b sont égaux.

Ensuite, par une récurrence forte sur la hauteur de l'arbre a, on montre que a et (abd_neg a) contiennent les mêmes variables.

Finalement, on peut montrer la proposition par disjonction de cas. On note a l'arbre en entrée et a' l'arbre en sortie :

- Si a est réduit à une feuille alors a' est un arbre réduit à une feuille. Donc a' est un arbre de décision bien formé.
- Sinon $a = test_{b_i}(v, f)$ avec v et f des arbres vérifiant les conditions (C 2.1) et (C 2.2). On note v' et f' les arbres renvoyés par la fonction abd_neg lorsqu'elle est appliquée aux arbres v et f. On a $a' = test_{b_i}(v', f')$. D'après ce qui précède :
 - Puisque $v \neq f$, on a $v' \neq f'$ donc la condition (C 2.1) est respectée pour a'.
 - Les arbres v et v' contiennent les mêmes variables ainsi que f et f'. Donc la condition (C 2.2) est respectée pour a'.

Finalement a' est un arbre de décision bien formé.

Question 6.c – On note a_1 l'arbre en entrée de la fonction abd_neg et a_2 l'arbre en sortie. On note également g_1 et g_2 les fonctions représentées par les arbres a_1 et a_2 . Montrons par récurrence forte sur la hauteur h de a_1 que $g_2 = \neg g_1$:

- Si h = 0 alors l'arbre a_1 est réduit à une feuille. Si a_1 vaut \bot alors a_2 vaut \top . Ainsi, g_1 est la fonction constante égale à 0 et g_2 est la fonction constante égale à 1. On obtient bien l'égalité $g_2 = \neg g_1$. Idem si a_1 vaut \top .
- Soit $h \in \mathbb{N}^*$. On suppose que abd_neg est correcte pour tout arbre dont la hauteur est strictement inférieure à h et on le montre pour un arbre de hauteur h. Un arbre a_1 de hauteur $h \ge 1$ est de la forme $a_1 = test_{b_i}(v_1, f_1)$ avec v_1 et f_1 des arbres de hauteur strictement inférieure à h. On note v_2 et f_2 les arbres renvoyés par la fonction abd_neg lorsqu'elle est appliquée aux arbres v_1 et f_1 . On a $a_2 = test_{b_i}(v_2, f_2)$. On note g'_1, g''_1, g'_2 et g''_2 les fonctions représentées par les arbres v_1, f_1, v_2 et f_2 . D'après l'hypothèse de récurrence :

$$g_2' = \neg g_1'$$
 et $g_2'' = \neg g_1''$.

On a donc:

$$g_2 = test(\pi_i, g_2', g_2'') = test(\pi_i, \neg g_1', \neg g_1'') = \neg test(\pi_i, g_1', g_1'') = \neg g_1$$

Question 7 -

```
let rec abd_egal a1 a2 = match a1, a2 with
   | Bool true, Bool true -> true
   | Bool false, Bool false -> true
   | Test(i1, v1, f1), Test(i2, v2, f2) ->
      i1 = i2 && abd_egal v1 v2 && abd_egal f1 f2
   | _ -> false;;
```

Question 8 -

```
let rec abd_partiel i0 b0 = function
| Test(i, v, f) when i0 = i -> if b0 then v else f
| Test(i, v, f) when i0 > i ->
| let v1 = abd_partiel i0 b0 v in
| let f1 = abd_partiel i0 b0 f in
| if abd_egal v1 f1 then v1 else Test(i, v1, f1)
| a -> a;;
```

Question 9 -

```
(* On utilise la question 4.b avec i le plus petit indice d'une
  variable qui apparait dans les arbres c, v et f. *)
let var_racine = function
 | Test(i, _, _) -> i
 | Bool _ -> max_int;;
let var_min c v f = min (var_racine c) (min (var_racine v) (var_racine f));;
let rec abd_test c v f = match c with
  | Bool true -> v
  | Bool false -> f
  | ->
     let i = var_min c v f in
    let v_res =
       let fct = abd_partiel i true in
       abd_test (fct c) (fct v) (fct f) in
     let f_res =
       let fct = abd_partiel i false in
       abd_test (fct c) (fct v) (fct f) in
     if abd_egal v_res f_res then v_res else Test(i, v_res, f_res);;
```

Question 10 -

```
let abd_et a1 a2 = abd_test a1 a2 (Bool false);;
let abd_ou a1 a2 = abd_test a1 (Bool true) a2;;
let abd_implique a1 a2 = abd_test a1 a2 (Bool true);;
```