Exercice 1. Mots

- 1. Pour tout mot u, on note $\mathrm{suff}(u)$ l'ensemble des sufffixes de u. Soient u et v deux mots tels que $u \in \mathrm{suff}(v)$. Montrer que $\mathrm{suff}(u) \subset \mathrm{suff}(v)$.
- 2. Soit $\Sigma = \{a, b\}$. Déterminer les mots sur Σ dont tous les facteurs sont des préfixes.
- 3. (a) Soient u et v deux mots ayant le même ensemble de préfixes. u et v sont-ils nécessairement égaux?
 - (b) Même question pour l'ensemble des préfixes propres (ensemble des préfixes différents du mot entier).
- 4. Soient a, b deux lettres et u un mot tel que au = ub. Montrer que u est d'une certaine forme qu'on précisera.

Exercice 2. Langages

- 1. Soit Σ un alphabet et $L \subset \Sigma^*$ un langage.
 - (a) Montrer que:

$$\left[L \cdot \Sigma^* = \Sigma^* \cdot L = L\right] \Leftrightarrow \left[\exists L_0 \subset \Sigma^* : L = \Sigma^* \cdot L_0 \cdot \Sigma^*\right]$$

- (b) Montrer que $\varepsilon \in L$ si et seulement si $L \neq \emptyset$ et $L \subset L \cdot L$.
- (c) Montrer que $\varepsilon \in L$ si et seulement si $L \cdot \Sigma^* = \Sigma^*$.
- 2. Soient L_1 et L_2 deux langages finis. Majorer $|L_1 \cdot L_2|$ en fonction de $|L_1|$ et $|L_2|$.
- 3. Pour tout langage L, on note pref(L) l'ensemble des préfixes des mots de L. Soient L_1 et L_2 deux langages. Déterminer $pref(L_1 \cdot L_2)$.

Exercice 3. Lemme d'Arden

On se place sur l'alphabet $\Sigma = \{a, b\}$ et on s'intéresse aux systèmes d'équations $(E_1), (E_2), (E_3), (E_4)$ où les inconnues sont les $X_i \subset \Sigma^*$.

$$(E_1): \begin{cases} X_1 = \{a, b\} \cdot X_2 \\ X_2 = \{a\} \cdot X_2 \cup \{b\} \cdot X_1 \cup \{\varepsilon\} \end{cases}$$

$$(E_2): \begin{cases} X_1 = \{a\} \cdot X_1 \cup \{b\} \cdot X_2 \\ X_2 = \{b\} \cdot X_1 \cup \{a\} \cdot X_2 \cup \{\varepsilon\} \end{cases}$$

$$(E_3): \begin{cases} X_1 = \{b\} \cdot X_2 \cup \{a\} \cdot X_3 \\ X_2 = \{b\} \cdot X_3 \cup \{a\} \cdot X_1 \cup \{\varepsilon\} \\ X_3 = \Sigma \cdot X_3 \end{cases}$$

$$(E_4): \begin{cases} X_1 = \{a\} \cdot X_4 \cup \{b\} \cdot X_2 \\ X_2 = \{a\} \cdot X_3 \cup \{b\} \cdot X_4 \\ X_3 = \{b\} \cdot X_5 \cup \{a\} \cdot X_4 \cup \{\varepsilon\} \\ X_4 = \Sigma \cdot X_4 \\ X_5 = \{a\} \cdot X_3 \cup \{b\} \cdot X_4 \end{cases}$$

- 1. Résoudre (E_1) , puis (E_3) , puis (E_4) .
- 2. Résoudre (E_2) , puis décrire les solutions de manière simple.

Exercice 4. Mots de Fibonacci

Soit $\Sigma = \{a, b\}$. Les mots de Fibonacci sont définis par récurrence :

$$\begin{cases} f_0 = \varepsilon, f_1 = a, f_2 = b \\ \forall n \geqslant 1 : f_{n+2} = f_{n+1} \cdot f_n \end{cases}$$

- 1. Soit $n \geqslant 3$. Déterminer les deux dernière lettres de f_n . Justifier.
- 2. Pour tout $n \ge 3$, on note g_n le mot f_n duquel on a supprimé les deux dernière lettres. Montrer que g_n est un palindrome.

Exercice 5.

Soit u et v deux mots non vides. Montrer que :

Il existe deux mots x, y tels que $u = x \cdot y$ et $v = y \cdot x$

 \Leftrightarrow

Il existe un mot w tel que $u \cdot w = w \cdot v$.

Exercice 6. Code sur un alphabet

Soit Σ un alphabet et $L \subset \Sigma^*$ un langage. On dit que L est un $\operatorname{\mathbf{code}}$ sur Σ lorsque :

Pour tout
$$(p,q) \in \mathbb{N}^2$$
, pour tout $(x_1, ..., x_p, y_1, ..., y_q) \in L^{p+q}$, si $x_1 ... x_p = y_1 ... y_q$, alors $p = q$ et $x_1 = y_1, ..., x_p = y_p$.

1. Parmi les langages suivants, déterminer lesquels sont des codes :

$$L_1 = \{a, ba, bba, baab\}$$

$$L_2 = \{aa, ab, aab, bba\}$$

$$L_3 = \{ab, baa, abba, aabaa\}$$

$$L_4 = \{b, ab, baa, abaa, aaaa\}$$

- 2. Montrer que si $\varepsilon \in L$, alors L n'est pas un code.
- 3. Soit $u \in \Sigma^*$ un mot non vide. Montrer que $\{u\}$ est un code.
- 4. Soient u et v deux mots distincts non vides. Montrer que $\{u,v\}$ est un code si et seulement si $uv \neq vu$.

Exercice 7. Mots de Bruijn

Définition 1. Soit Σ un alphabet et $u = u_0 \dots u_{n-1}$ un mot non vide. Pour tout $i \in [0, n-1]$ et $k \in \mathbb{N}^*$, le **facteur** circulaire d'indice i et de longueur k de u est le mot :

$$u_{r(i)}u_{r(i+1)}u_{r(i+2)}\dots u_{r(i+k-1)}$$

où r(j) est le reste dans la division euclidienne de j par n.

Définition 2. Soit $k \in \mathbb{N}^*$. Le mot $u = u_0 \dots u_{n-1}$ est un **mot de Bruijn d'ordre** k si pour tout $v \in \Sigma^k$, il existe un unique $i \in [0, n-1]$ tel que v est le facteur circulaire d'indice i et de longueur k de u.

- 1. Déterminer un mot de Bruijn pour $\Sigma = \{a, b\}$ et $k \in \{1, 2, 3\}$.
- 2. Si u est un mot de Bruijn d'ordre k, que vaut |u|?

Notation 3. Pour $k \in \mathbb{N}^*$, on note $G_k = (\Sigma^k, E_k)$ le graphe orienté dans lequel il existe un arc de u vers v si et seulement si le suffixe de u de longueur k-1 est un préfixe de v.

Théorème (Théorème d'Euler). Soit G un graphe orienté fortement connexe (c'est à dire que pour tout couple de sommets (u, v), il existe un chemin de u vers v et inversement). Alors :

G admet un cycle passant une et une seule fois par chaque arc

 \Leftrightarrow

Pour tout sommet u, le degré entrant de u est égal au degré sortant de u.

- 3. Expliquer comment utiliser le graphe G_k pour construire un mot de Bruijn d'ordre k+1.
- 4. Donner un mot de Bruijn d'ordre 4 pour $\Sigma = \{a, b\}$ et d'ordre 2 pour $\Sigma = \{a, b, c\}$.

Algorithme de Hierholzer. Soit G = (S, A) un graphe orienté admettant un cycle passant une et une seule fois par chaque arc. Pour construire un tel cycle :

- \rightarrow On choisit un sommet initial $s_0 \in S$ et on suit les arcs de G, en s'interdisant de repasser deux fois par le même arc. Comme chaque sommet a le même degré entrant et sortant, lorsque l'algorithme ne peut plus emprunter d'arcs, le dernier sommet visité est nécessairement s_0 .
 - On obtient donc un cycle γ entre s_0 et lui-même, mais qui n'emprunte pas nécessairement tous les arcs de G.
- \rightarrow Tant qu'il existe un sommet s de γ ayant un arc sortant n'ayant pas été emprunté, on construit comme dans l'étape précédente un cycle γ' entre s et lui-même sans emprunter les arcs de γ .
- \rightarrow Soient γ_1 et γ_2 les chemins tels que $\gamma = \gamma_1 + (s) + \gamma_2$ où les + représentent des concaténations de chemins. On recommence l'étape précédente en remplaçant γ par $\gamma_1 + \gamma' + \gamma_2$.
- 5. À l'aide de l'algorithme de Hierholzer, écrire une fonction OCaml qui renvoie un mot de Bruijn d'ordre $k \in \mathbb{N}^*$ pour l'alphabet $\Sigma = [1; n]$.