Révisions pour le DS 3 - MPSI

Ce document recense des fonctions du cours et des TP que vous devez savoir écrire rapidement
et sans erreur. Lorsque plusieurs versions d’une méme fonction sont données, toutes les
versions sont a connaitre. Pensez a revoir également les fiches de révisions précédentes.

1 Listes

* Indique si toutes les sous-listes de « L: list[list[int]] » sont de taille n.

def test_taille(L, n):
for 1 in L:
if len(1) != n:
return False
return True

* Renvoie True si et seulement si tout i € [0; n — 1] apparait au moins une fois dans L.
Complexité en O (max(len(L),n)).

def tous_presents(L, n):
B = [False] * n
for e in L:
if 0 <= e < n:
Ble] = True
for i in range(n):
if not B[i]:
return False
return True

2 Boucles imbriquées

n 2n
* Renvoie ZZ Vit+g:
i=1 j=1

def somme_sqrt(n):
s =0
for i in range(1, n+1):
for j in range(l, 2*n+1):
s += (i+j)**0.5
return s

* Indique si tous les entiers présents dans « L: list[list[int]] » appartiennent a [1; n].

def test_valil(L, n):
for 1 in L:
for e in 1:
if e <1 o0or e >n:
return False
return True

*  Renvoie une liste « L: 1ist[int,int] » contenant tous les couples (i, j) € [1, n]? tels que i < j.

def liste_couples(n):
L=1]
for i in range(1, n+1):
for j in range(i+1l, n+1):
L.append((i,j))
return L




3 Algorithmes dichotomiques

* Indique si e appartient a L a l'aide d’une recherche dichotomique

i=0
j = len(L)-1
while i <= j:
m = (i+j)//2
if Llm] == e:

i = mtl
else:
j =m-1
return False

return True
elif L[m] < e:

# Hypothése: L est triée par ordre croissant
def recherche_dicho(L, e):

* Calcule x* a l'aide d’une exponentiation rapide.

# Version itérative
# Hypothése: n >= 0
def expo_rapide(x, n):

p=1; y=x; m=
while m != 0:
ifm% 2==1:
p = p*y
y = y*
m=m//2
return p

n

# Version récursive
# Hypothése: n >= 0
def expo_rapide(x, n):
if n ==
return 1
elif n % 2 ==
return expo_rapide(x*x, n//2)
else:
return x*expo_rapide(x*x, n//2)



	Listes
	Boucles imbriquées
	Algorithmes dichotomiques

