
Révisions pour le DS 3 - MPSI

Ce document recense des fonctions du cours et des TP que vous devez savoir écrire rapidement
et sans erreur. Lorsque plusieurs versions d’une même fonction sont données, toutes les
versions sont à connaître. Pensez à revoir également les fiches de révisions précédentes.

1 Listes
⋆ Indique si toutes les sous-listes de « L: list[list[int]] » sont de taille n.

def test_taille(L, n):
for l in L:

i f len(l) != n:
return False

return True

⋆ Renvoie True si et seulement si tout i ∈ J0; n − 1K apparaît au moins une fois dans L.
Complexité en O(max(len(L), n)).

def tous_presents(L, n):
B = [False] * n
for e in L:

i f 0 <= e < n:
B[e] = True

for i in range(n):
i f not B[i]:

return False
return True

2 Boucles imbriquées

⋆ Renvoie
n∑

i=1

2n∑
j=1

√
i + j :

def somme_sqrt(n):
s = 0
for i in range(1, n+1):

for j in range(1, 2*n+1):
s += (i+j)**0.5

return s

⋆ Indique si tous les entiers présents dans « L: list[list[int]] » appartiennent à J1; nK.

def test_val1(L, n):
for l in L:

for e in l:
i f e < 1 or e > n:

return False
return True

⋆ Renvoie une liste « L: list[int,int] » contenant tous les couples (i, j) ∈ J1, nK2 tels que i < j.

def liste_couples(n):
L = []
for i in range(1, n+1):

for j in range(i+1, n+1):
L.append((i,j))

return L

1

3 Algorithmes dichotomiques
⋆ Indique si e appartient à L à l’aide d’une recherche dichotomique

Hypothèse: L est triée par ordre croissant
def recherche_dicho(L, e):

i = 0
j = len(L)-1
while i <= j:

m = (i+j)//2
i f L[m] == e:

return True
el i f L[m] < e:

i = m+1
else:

j = m-1
return False

⋆ Calcule xn à l’aide d’une exponentiation rapide.

Version itérative
Hypothèse: n >= 0
def expo_rapide(x, n):

p = 1; y = x; m = n
while m != 0:

i f m % 2 == 1:
p = p*y

y = y*y
m = m//2

return p

Version récursive
Hypothèse: n >= 0
def expo_rapide(x, n):

i f n == 0:
return 1

el i f n % 2 == 0:
return expo_rapide(x*x, n//2)

else:
return x*expo_rapide(x*x, n//2)

2

	Listes
	Boucles imbriquées
	Algorithmes dichotomiques

