
TP 13 d’informatique - MPSI - 03/02/2026 - Algorithmes de tri

Dans ce TP, on s’intéresse à des algorithmes de tris. Étant donnée une liste L, il s’agit de réorganiser
L pour obtenir une liste dont les éléments sont rangés par ordre croissant. Par exemple en Python, les
commandes sorted(L) et L.sort() trient la liste L.

Vocabulaire 1. L’ordre utilisé habituellement sur les chaînes de caractères et les tuples s’appelle l’ordre
lexicographique. Cet ordre suit la même logique que l’ordre alphabétique :

L1 = ["maison", "chien", "python", "chat"]
print(sorted(L1)) # Affiche ['chat', 'chien', 'maison', 'python']
L2 = [(1,8), (1,2,3), (2,0), (1,2)]
print(sorted(L2)) # Affiche [(1,2), (1,2,3), (1,8), (2,0)]

Remarque 2. Les énoncés de ce TP s’intéressent uniquement à des listes d’entiers. Toutefois, la plupart
des fonctions écrites pourront être utilisées avec des listes de flottants, des listes de couples, des listes de
chaînes de caractères . . .

Vocabulaire 3. Un tri en place est un algorithme de tri qui modifie directement L et dans lequel on
s’interdit de créer une autre liste ou un dictionnaire pour y copier les éléments de L.

L1 = [5,7,2,6,3]
T1 = sorted(L1) # sorted n'est pas un tri en place: une autre liste T1 est créée
print(L1) # Affiche [5,7,2,6,3]
print(T1) # Affiche [2,3,5,6,7]

L2 = [5,7,2,6,3]
L2.sort() # .sort est un tri en place: il renvoie None
print(L2) # Affiche [2,3,5,6,7]. La liste initiale n'est plus accessible.

Vocabulaire 4. Un tri par comparaisons choisit la manière de trier L en se basant uniquement sur
le résultat de comparaisons entre éléments de la liste. Par exemple, le tri par insertion est un tri par
comparaisons (exercice 2), mais ce n’est pas le cas du tri par comptage (exercice 4). Un tri par comparaisons
permet de trier n’importe quel type d’objets sur lequel les opérateurs de comparaisons (<, <=, . . .) sont
définis. À l’inverse, le tri par comptage de l’exercice 4 ne permet de trier que des entiers.

Proposition 5 (admise). Le temps d’exécution d’un tri par comparaisons est au moins en O(n. log(n)) où
n est la taille de la liste. Cette borne est atteinte pour le tri fusion (exercice 9) et peut être battue par un
tri qui n’est pas par comparaisons.

Vocabulaire 6. Un tri stable est un tri dans lequel l’ordre de deux éléments égaux est le même dans la
liste initiale et dans la liste triée. Par exemple, supposons disposer d’une liste contenant des noms d’élèves
associés à une note :

[("Léa", 15), ("Grégoire", 11), ("Hugo", 17), ("Hélène", 17), ("Clément", 14)]

Lorsqu’on trie la liste en fonction de la note, un tri stable renverra nécessairement :

[("Grégoire", 11), ("Clément", 14), ("Léa", 15), ("Hugo", 17), ("Hélène", 17)]

Un tri qui n’est pas stable peut potentiellement échanger les élèves "Hugo" et "Hélène" :

[("Grégoire", 11), ("Clément", 14), ("Léa", 15), ("Hélène", 17), ("Hugo", 17)]

1



Figure : Comparaison des
temps d’exécutions des diffé-
rents algorithmes de tri étu-
diés dans ce TP. Ce graphique
présente en fonction de n le
temps nécessaire pour trier 10
listes de taille n composées
d’entiers choisis aléatoirement
dans J−2n; 2nK.

0 50 100 150 200 250 300 350 400

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Tri bulles
Tri par insertionTri par sélection
Tri fusionTri rapideTri par comptageFonction sorted

Pensez à organiser vos programmes avec des fonctions
intermédiaires et à tester vos fonctions sur la liste vide.

Exercice 1. Tri par sélection
Le principe du tri par sélection est de créer une liste T initialement vide et d’ajouter à la fin de T le plus

petit élément de L, puis le deuxième plus petit élément de L, puis le troisième plus petit, et ainsi de suite
jusqu’à ce que T contienne tous les éléments de L. Par exemple, voici l’évolution de T lors du tri de la liste
[5, 8, 1, 6, 5, 7] :

[] → [1] → [1,5] → [1,5,5] → [1,5,5,6] → [1,5,5,6,7] → [1,5,5,6,7,8]

1. Écrire une fonction tri_selection qui trie une liste d’entiers à l’aide du tri par sélection. Si besoin,
on pourra utiliser les indications ci-dessous. Tester avec une liste contenant plusieurs fois le même
élément.

2. Quelle est la complexité de votre fonction ?
3. Est-ce un tri en place ? Un tri stable ? Expliquer comment modifier votre programme pour passer d’un

tri stable à un tri non stable (ou inversement).

Indications (essayez de résoudre l’exercice sans lire ce qui suit). On pourra écrire les fonctions
intermédiaires suivantes :

(a) Une fonction mini qui prend en entrée une liste L et renvoie l’indice du plus petit élément de L. Si le
plus petit élément apparaît plusieurs fois, on renverra le plus petit indice possible. Si la liste L est vide
votre fonction déclenchera une erreur.

(b) Une fonction supprimer qui prend en entrée une liste L ainsi qu’un indice i et renvoie la liste L privée
de L[i]. Si la condition i ∈ J0; len(L) − 1K n’est pas vérifiée, votre fonction déclenchera une erreur.

Exercice 2. Tri par insertion
Le principe du tri par insertion est de créer une liste T initialement vide et d’y ajouter L[0], puis

L[1], puis L[2], . . . À chaque ajout, on fait en sorte que T reste triée. Par exemple, voici l’évolution de
T lors du tri par insertion de la liste [5, 8, 1, 6, 5, 7] :

[] → [5] → [5,8] → [1,5,8] → [1,5,6,8] → [1,5,5,6,8] → [1,5,5,6,7,8]

1. Écrire une fonction tri_insertion qui trie une liste d’entiers à l’aide du tri par insertion. À chaque
étape, on utilisera une boucle while pour repérer l’indice auquel il faut insérer l’élément. Si besoin,
on pourra utiliser les indications ci-dessous.

2. Quelle est la complexité de votre fonction ?

2



3. Est-ce un tri en place ? Un tri stable ? Expliquer comment modifier votre programme pour passer d’un
tri stable à un tri non stable (ou inversement).

4. Supposons qu’à chaque étape, l’indice d’insertion soit calculé à l’aide d’une recherche dichotomique.
Quelle est la complexité du tri par insertion dans ce cas ?

Indications (essayez de résoudre l’exercice sans lire ce qui suit). On pourra écrire une fonction
intermédiaire « insertion(T: list[int], x: int) -> list[int] » qui prend en entrée une liste triée T
et renvoie une liste triée contenant les mêmes éléments que T + [x]. Votre fonction devra être de complexité
linéaire en len(T).

Exercice 3. Tri rapide
Le tri rapide est un algorithme récursif. Si la liste L à trier est vide, il suffit de renvoyer la liste vide.

Sinon, on choisit l’un des éléments de L noté e qu’on appelle le pivot (on peut par exemple choisir L[0]).
Soit L0 la liste L privée de e, soit L1 la liste des éléments de L0 inférieurs ou égaux à e et L2 la liste des
éléments de L0 strictement supérieurs à e. Soient T1 et T2 les listes obtenues lorsqu’on trie récursivement
L1 et L2. En utilisant T1 et T2, on peut alors calculer une liste triée T contenant les mêmes éléments que L.
L’arbre des appels récursifs lors du tri de la liste [6,2,8,5,6,3,9,1] est donné à la fin de l’énoncé.

1. Écrire une fonction tri_rapide qui trie une liste d’entiers à l’aide du tri rapide. Si besoin, on pourra
utiliser les indications ci-dessous.

2. Quelle est la complexité de votre fonction dans le pire cas ?
3. Est-ce un tri en place ? Un tri stable ? Expliquer comment modifier votre programme pour passer d’un

tri stable à un tri non stable (ou inversement).

Remarque. Pour tenter d’améliorer le temps d’exécution, on peut choisir le pivot d’une autre manière.
Par exemple, choisir l’un des éléments de L au hasard, ou bien choisir la médiane des éléments (voir l’exercice
10).

Indications (essayez de résoudre l’exercice sans lire ce qui suit). On pourra écrire une fonction
intermédiaire « separer(L: list[int]) -> (list[int], list[int]) » qui prend en entrée une liste non
vide L et renvoie les listes L1 et L2 dans le cas où L[0] est le pivot.

L = [6,2,8,5,6,3,9,1]
L1 = [2,5,6,3,1]; L2 = [8,9]
T1 = [1,2,3,5,6]; T2 = [8,9]
T = [1,2,3,5,6,6,8,9]

L = [2,5,6,3,1]
L1 = [1]; L2 = [5,6,3]
T1 = [1]; T2 = [3,5,6]
T = [1,2,3,5,6]

L = [1]
L1 = []; L2 = []
T1 = []; T2 = []
T = [1]

L = []
Cas de base

L = []
Cas de base

L = [5,6,3]
L1 = [3]; L2 = [6]
T1 = [3]; T2 = [6]
T = [3,5,6]

L = [3]
L1 = []; L2 = []
T1 = []; T2 = []
T = [3]

L = [6]
L1 = []; L2 = []
T1 = []; T2 = []
T = [6]

L = []
Cas de base

L = []
Cas de base

L = []
Cas de base

L = []
Cas de base

L = [8,9]
L1 = []; L2 = [9]
T1 = []; T2 = [9]
T = [8,9]

L = []
Cas de base

L = [9]
L1 = []; L2 = []
T1 = []; T2 = []
T = [9]

L = []
Cas de base

L = []
Cas de base

3



Exercice 4. Tri par comptage
Pour effectuer un tri par comptage d’une liste L, on suppose dans un premier temps que tous les éléments

de L sont positifs ou nuls. Soit m l’élément maximum de L. On créé une liste M de taille m+1 telle que pour
tout i ∈ J0; mK, l’entier M[i] est égal au nombre d’occurrences de i dans L. Finalement, en parcourant les
éléments de M, on peut en déduire une liste triée T contenant les mêmes éléments que L. Par exemple :

L = [1,0,2,1,4,5,1,2] M = [1,3,2,0,1,1] T = [0,1,1,1,2,2,4,5]

1. Écrire une fonction tri_comptage qui trie une liste d’entiers positifs à l’aide d’un tri par comptage.
Si besoin, on pourra utiliser les indications ci-dessous.

2. Adapter le tri par comptage dans le cas d’une liste d’entiers relatifs.

Indications (essayez de résoudre l’exercice sans lire ce qui suit).
(a) Écrire une fonction « maxi(L: list[int]) -> int » qui renvoie l’élément maximal de L. On pourra

supposer que L est non vide.
(b) Écrire une fonction « comptage(L: list[int]) -> list[int] » qui renvoie la liste M.

Vous pouvez faire les exercices 5, 6, 7 dans l’ordre que vous souhaitez.

Exercice 5. Tri de crêpes
Un forain présent lors de la foire de Nancy a préparé une pile de crêpes et veut les trier en fonction de

leurs diamètres (la plus grande en dessous et la plus petite au dessus). Par exemple en partant de la figure
1 ou de la figure 2, il souhaite obtenir la figure 3 :

Figure 1 Figure 2 Figure 3

Soit n ∈ N le nombre de crêpes. On indice les crêpes de 0 à n − 1, celle d’indice 0 étant celle se trouvant
en dessous. Pour effectuer son tri, le forain dispose de deux opérations :

⋆ Opération 1 – À partir d’un indice i ∈ J0, n − 1K, il peut trouver l’indice j ⩾ i correspondant à une
crêpe de diamètre maximal. Avec l’exemple de la figure 1 :

i 0 1 2 3 4 5 6 7 8 9 10 11
j 6 6 6 6 6 6 6 7 8 10 10 11

Pour cela, il suffit de repérer la crêpe qui dépasse par rapport aux autres.
⋆ Opération 2 – Étant donné un indice i ∈ J0, n − 1K, le forain peut placer sa spatule sous la crêpe

d’indice i et retourner la pile se trouvant au dessus de la spatule. Par exemple avec i = 4 et la pile de
la figure 1, on obtient la figure 2.

En Python, une pile de crêpes sera représentée par la liste des diamètres en commençant par la crêpe
d’indice 0. Ainsi, la figure 1 correspond à :

[5.2, 4.7, 7.4, 5.9, 3, 1.6, 10, 8.5, 4.1, 2.1, 3.9, 3.5]

1. Dans cette question, la liste « L: list[float] » représente la pile de crêpes.
(a) Écrire une fonction « maxi(L: list[float], i: int) -> int » correspondant à l’opération 1.
(b) Écrire une fonction « spatule(L: list[float], i: int) -> NoneType » correspondant à l’opé-

ration 2. La fonction doit modifier L directement, sans créer de liste intermédiaire et ne doit rien
renvoyer. Pour tester cette fonction on écrira :

4



L = [...]; spatule(L, ...); print(L)

2. (a) Trouver une procédure pour trier la pile de crêpes en utilisant uniquement les opérations 1 et 2.
On attend une explication en français, pas un programme Python.

(b) Donner en le démontrant un majorant sur le nombre d’utilisations des opérations 1 et 2 dans la
procédure de la question 2a.

3. (a) Écrire une fonction « tri_crepes(L: list[float]) -> NoneType » correspondant à la procé-
dure décrite dans la question 2a. Cette fonction doit modifier L et ne rien renvoyer.

(b) Quelle est la complexité de la fonction tri_crepes ?
4. Écrire une fonction « tri_crepes_bis(L: list[float]) -> list[float] » qui effectue le tri crêpes.

La différence avec la fonction de la question 3a est qu’elle doit renvoyer une nouvelle liste et ne pas
modifier L.

Le forain n’est pas complètement satisfait de la fonction tri_crepes car il pense avoir utilisé l’opération
2 plus de fois que nécessaire. Pour toute liste de crêpes P , on note op2(P ) le nombre minimal d’utilisations
de l’opération 2 pour trier P . Pour tout entier n, on note Mn le maximum des op2(P ) lorsque P parcourt
toutes les piles de crêpes de taille n. Par exemple :

n 0 1 2 3 4 5 6 7 8 9 10
Mn 0 0 1 3 4 5 7 8 9 10 11

Ainsi, n’importe quelle pile composée de 6 crêpes peut être triée en utilisant au plus 7 fois l’opération 2. De
plus, il existe une pile composée de 6 crêpes qui ne peut pas être triée en utilisant moins de 7 fois l’opération
2.

5. Écrire une fonction nb_max_op2 qui prend en entrée n ∈ N et renvoie Mn.

Exercice 6. Tri à bulles
Le tri à bulles se décompose en n-1 étapes. Soit e ∈ J1, n-1K un entier qui va représenter un numéro

d’étape. Lors de l’étape numéro e, le principe est de ne s’intéresser qu’aux éléments L[0], L[1], . . ., L[n-e]
et de faire en sorte qu’à la fin de l’étape, l’élément L[n-e] soit le maximum de L[0], L[1], . . ., L[n-e].
Pour cela, on échange deux éléments consécutifs de la liste s’ils ne sont pas rangés dans l’ordre croissant, en
commençant par les éléments d’indices 0 et 1, puis les éléments d’indices 1 et 2 et ainsi de suite jusqu’aux
éléments d’indices n-e-1 et n-e.

Par exemple, dans le cas particulier où la liste initiale vaut [6,2,1,7,9,0,7], voici l’évolution de cette
liste lors de la première étape (les deux éléments comparés sont soulignés) :

[6,2,1,5,9,0,7] → [2,6,1,5,9,0,7] → [2,1,6,5,9,0,7]

→ [2,1,5,6,9,0,7] → [2,1,5,6,9,0,7] → [2,1,5,6,0,9,7] → [2,1,5,6,0,7,9]

Voici l’évolution de la liste lors de la deuxième étape :

[2,1,5,6,0,7,9] → [1,2,5,6,0,7,9] → [1,2,5,6,0,7,9]

→ [1,2,5,6,0,7,9] → [1,2,5,0,6,7,9] → [1,2,5,0,6,7,9]

Notez que les deux derniers éléments ne sont pas comparés lors de la deuxième étape.

1. Écrire une fonction « tri_bulles(L: list[int]) -> NoneType » qui trie une liste d’entiers à l’aide
du tri à bulles. Votre fonction doit modifier la liste donnée en entrée et ne rien renvoyer. Si besoin, on
pourra utiliser les indications ci-dessous.

2. Quelle est la complexité de votre fonction ?
3. Est-ce un tri en place ? Un tri stable ? Expliquer comment modifier votre programme pour passer d’un

tri stable à un tri non stable (ou inversement).

5



Indications (essayez de résoudre l’exercice sans lire ce qui suit). On pourra écrire une fonction
intermédiaire etape_tri_bulles qui prend en entrée une liste L ainsi qu’un entier i_max et modifie la liste
L en comparant les éléments d’indices 0 et 1, puis les éléments d’indices 1 et 2 . . . puis les éléments d’indices
i_max et i_max + 1.

Exercice 7. Le tri du singe
Le tri du singe, aussi appelé le tri stupide, est un algorithme de tri probabiliste (c’est à dire que son

implémentation utilise le hasard) qui n’a aucun intérêt pratique puisque son exécution est très lente.
On rappelle qu’une permutation de J0, n − 1K est une fonction bijective de l’ensemble J0, n − 1K dans lui-

même. Lors d’un tri du singe, on applique une permutation aléatoire sur les éléments de la liste et on vérifie
si la liste ainsi obtenue est effectivement triée. Si c’est le cas, l’algorithme s’arrête et sinon on recommence
avec une nouvelle permutation aléatoire jusqu’à ce que la liste soit triée.

On choisit de représenter une permutation σ de J0, n − 1K par une liste S de taille n où pour tout
i ∈ J0, n − 1K, l’élément S[i] vaut σ(i). Ainsi, une liste S est une permutation lorsque S contient chaque
élément de J0, n − 1K une et une seule fois. Appliquer une permutation S à une liste L consiste à créer une
nouvelle liste M telle que pour tout i ∈ J0, n − 1K, l’élément d’indice i de M est l’élément d’indice S[i] de L.
Par exemple :

Si L = [8, 1, 0, 10, 5, 6] et S = [2, 5, 0, 3, 1, 4] alors M = [0, 6, 8, 10, 1, 5].

Afin de créer une permutation aléatoire, on procède de la manière suivante :
⋆ On initialise tous les éléments de S avec des None.
⋆ Pour i variant de 0 à n-1 :

– On note A ∈ N∗ le nombre de None dans S et on choisit un entier a aléatoirement dans J1, AK.
– On remplace le aème None de S par i.

1. Écrire une fonction tri_singe qui trie une liste d’entiers à l’aide du tri du singe. Si besoin, on pourra
utiliser les indications ci-dessous.

2. Est-ce un tri en place ? Un tri stable ?

Indications (essayez de résoudre l’exercice sans lire ce qui suit).
(a) Écrire une fonction « est_triee(L: list[int]) -> bool » qui renvoie True si L est triée et False

sinon.
(b) Écrire une fonction « a_eme_None(a: int, S: list[int ou NoneType]) -> int » qui renvoie l’in-

dice du aème None dans S. On pourra supposer que S contient au moins a fois None.
(c) Écrire une fonction perm_alea qui prend en entrée un entier n et renvoie S une permutation aléatoire

de J0, n − 1K. Bien sûr, vous devez utiliser la méthode décrite ci-dessus. Vous pouvez utiliser la fonction
randint du module random qui prend en entrée deux entiers b et c, et qui renvoie un entier aléatoire
choisi dans Jb, cK.

(d) Écrire une fonction appliquer_perm qui prend en entrée les deux listes L et S, et renvoie la liste M
obtenue lorsqu’on applique la permutation S à L. Votre fonction ne doit pas modifier L.

6



Exercices à rendre au plus tard le 01/03/2026 à 20h

Exercice 8. Tri par sélection en place
Le principe du tri par sélection a été expliqué dans l’exercice 1.

1. Écrire une fonction « tri_selection_EP(L: list[int]) -> NoneType » qui effectue un tri par sé-
lection en place (en particulier, votre fonction doit modifier L et ne rien renvoyer). Si besoin, on pourra
utiliser les indications ci-dessous. Pour tester la fonction on écrira :

L = [ ... ]; tri_selection_EP(L); print(L)

2. Est-ce un tri stable ? Justifier.

Indications (essayez de résoudre l’exercice sans lire ce qui suit). Pour i variant de 0 à len(L)-1,
on repère le plus petit élément de L[i:], puis on échange cet élément avec L[i]. Par exemple, voici l’évolution
de la liste L = [5, 8, 1, 6, 5, 7] lors d’un tri par sélection en place :

[5,8,1,6,5,7] → [1,8,5,6,5,7] → [1,5,8,6,5,7]

→ [1,5,5,6,8,7] → [1,5,5,6,8,7] → [1,5,5,6,7,8].

On pourra donc commencer par écrire une fonction « mini_ter(L: list[int], i_min: int) -> int »
qui renvoie l’indice i ∈ Ji_min; len(L) − 1K tel que L[i] est minimum. Si le minimum apparaît plusieurs
fois, on renverra le plus petit indice possible.

Exercice 9. Tri fusion
Le tri fusion est un algorithme récursif. Pour l’appliquer à une liste L, on commence par la séparer en

deux sous-listes L1 et L2 telles que L1 + L2 = L (si L est de taille paire alors L1 et L2 ont la même taille,
sinon L1 a un élément de plus que L2). On trie récursivement L1 et L2 pour obtenir deux nouvelles listes T1
et T2. Finalement, à partir de T1 et T2, on construit une nouvelle liste triée T contenant les mêmes éléments
que L (cette opération s’appelle une fusion).

L = [6,2,8,5,6,3,9]
L1 = [6,2,8,5]; L2 = [6,3,9]
T1 = [2,5,6,8]; T2 = [3,6,9]
T = [2,3,5,6,6,8,9]

L = [6,2,8,5]
L1 = [6,2]; L2 = [8,5]
T1 = [2,6]; T2 = [5,8]
T = [2,5,6,8]

L = [6,2]
L1 = [6]; L2 = [2]
T1 = [6]; T2 = [2]
T = [2,6]

L = [6]
Cas de base

L = [2]
Cas de base

L = [8,5]
L1 = [8]; L2 = [5]
T1 = [8]; T2 = [5]
T = [5,8]

L = [6,3,9]
L1 = [6,3]; L2 = [9]
T1 = [3,6]; T2 = [9]
T = [3,6,9]

L = [9]
Cas de base

L = [6,3]
L1 = [6]; L2 = [3]
T1 = [6]; T2 = [3]
T = [3,6]

L = [6]
Cas de base

L = [3]
Cas de base

L = [8]
Cas de base

L = [5]
Cas de base

1. Écrire une fonction tri_fusion qui trie une liste d’entiers à l’aide du tri fusion. Si besoin, on pourra
utiliser les indications ci-dessous.

2. Est-ce un tri en place ? Un tri stable ? Expliquer comment modifier votre programme pour passer d’un
tri stable à un tri non stable (ou inversement).

7



Remarque. Le tri fusion est en complexité O(n log(n)) où n est la taille de la liste à trier. En pratique,
le tri rapide est souvent plus rapide que le tri fusion.

Indications (essayez de résoudre l’exercice sans lire ce qui suit). On pourra écrire une fonction
intermédiaire

fusion(T1: list[int], T2: list[int]) -> list[int]

qui prend en entrée deux listes triées et effectue la fusion de ces deux listes (c’est à dire qu’elle renvoie une
liste triée contenant les mêmes éléments que T1 + T2). Votre fonction devra être de complexité linéaire en
len(T1) + len(T2).

Exercice 10. Sélection en temps linéaire (facultatif)
Le temps d’exécution d’un tri rapide dépend du pivot choisi à chaque étape. Dans l’idéal, il faudrait que

le pivot soit la médiane des éléments de la liste à trier. On aimerait donc pouvoir trouver efficacement la
médiane des éléments d’une liste. Le problème de la sélection (qui n’a rien à voir avec le tri par sélection)
est une généralisation de ce problème.

Étant donnée une liste non vide L d’éléments deux à deux distincts ainsi qu’un entier i ∈ J0; len(L) − 1K,
le problème de la sélection consiste à déterminer l’élément T[i] où T est la liste triée qui contient les
mêmes éléments que L. Par exemple, la médiane correspond à i = (len(L)-1)//2. Évidemment, on pourrait
commencer par trier la liste L à l’aide de la fonction sorted de Python, mais le temps d’exécution serait
alors en Ω(n log(n)) avec n la taille de L. Dans cet exercice, on va étudier un algorithme publié en 1973 qui
résout le problème de la sélection en temps linéaire.

En voici le principe : si la liste L est de taille au plus 5, on trie les éléments de L et on renvoie l’élément
d’indice i dans la liste triée, sinon :

⋆ On répartit les éléments de L en groupes de 5 éléments et on construit une liste L_med contenant les
médianes de chacun de ces groupes. L_med est donc de taille (len(L)-1)//5 + 1. Par exemple, à
partir de la liste

[15, -32, -19, -9, 3, -12, 34, -23, 30, -20, 19, 25, 5, -24, -18, -16, -8]

on créé quatre groupes :

[15, -32, -19, -9, 3] [-12, 34, -23, 30, -20] [19, 25, 5, -24, -18] [-16, -8]

La liste L_med est donc égale à :

L_med = [-9, -12, 5, -16]

⋆ À l’aide d’un appel récursif, on calcule med_med la médiane des éléments de L_med. Dans l’exemple
ci-dessus, on obtient med_med = -12.

⋆ On construit L1 (resp. L2) la liste de tous les éléments de L strictement inférieurs (resp. strictement
supérieurs) à med_med. Notez qu’on a supposé que les éléments de L sont distincts.

⋆ Il y a alors trois cas en fonction de la taille de L1 :
- L’entier med_med est l’élément à sélectionner. Dans ce cas, on renvoie med_med.
- L’élément à sélectionner est dans la liste L1. Dans ce cas, on fait un appel récursif sur L1.
- L’élément à sélectionner est dans la liste L2. Dans ce cas, on fait un appel récursif sur L2.

1. Écrire une fonction « selection(L: list[int], i: int) -> int » qui résout le problème de la
sélection.

Remarque. Le fait que cet algorithme soit en complexité O(len(L)) n’est pas du tout évident, mais c’est
bel et bien le cas.

8


	Ex 1-  Tri par sélection  
	Ex 2- Tri par insertion  
	Ex 3- Tri rapide
	Ex 4-  Tri par comptage  
	Ex 5-  Tri de crêpes  
	Ex 6- Tri à bulles  
	Ex 7-  Le tri du singe  
	Ex 8- Tri par sélection en place
	Ex 9-  Tri fusion  
	Ex 10-  Sélection en temps linéaire (facultatif)  

