
TP 10 d’informatique - MPSI - Algorithmes dichotomiques - 06/01/2026

Vocabulaire.
→ Un pseudo-code est la description (en français) d’un algorithme.
→ Une implémentation est un programme écrit en Python permettant d’exécuter un algorithme.

Exercice 1. Exponentiation rapide
Le but de l’exercice est de calculer xn où n ∈ N et x ∈ R à l’aide d’un algorithme dichotomique. Dans

tout l’exercice, il est interdit d’utiliser l’opérateur **.
1. Commençons par implémenter l’algorithme naïf de mise à la puissance.

(a) Donner un pseudo-code permettant d’obtenir xn à l’aide de n tours de boucle.
(b) Écrire une fonction puiss qui implémente cet algorithme.
(c) Quelle est la complexité de votre fonction ?

Pour calculer xn à l’aide d’une dichotomie, l’idée est de diviser la valeur de n par 2 à chaque tour de
boucle. Pour cela, nous utiliserons la relation :

xn = 1 si n = 0
xn = (x2)n/2 si n > 0 est pair
xn = x × (x2)(n−1)/2 si n > 0 est impair

(1)

Par exemple, pour calculer 221 :

221 = 1 × (2)21

= 2 × (4)10

= 2 × (16)5

= 32 × (256)2

= 32 × (65 536)1

= 2 097 152 × (4 294 967 296)0

p y m

1 2 21
2 4 10
2 16 5
32 256 2
32 65 536 1

2 097 152 4 294 967 296 0

Dans les calculs qui précèdent, chaque égalité (sauf la première) s’obtient grâce à l’une des relations de
l’équation (1). Les étapes du calcul sont caractérisées par trois variables p, y et m comme présenté dans le
tableau. Cet algorithme peut être qualifié de “dichotomique” car la valeur de m est divisée par 2 (au moins)
à chaque itération.

2. (a) Donner un pseudo-code permettant de calculer xn à l’aide d’une exponentiation rapide. Vous
devez bien sûr utiliser le principe décrit ci-dessus en manipulant trois variables p, y et m.

(b) Écrire une fonction puiss_dicho qui implémente cet algorithme.
(c) (facultatif) Quelle est la complexité de votre fonction ?

3. (a) Vérifier à l’aide de tests que la fonction puiss_dicho est plus rapide que la fonction puiss. On
pourra utiliser la fonction perf_counter du module time pour mesurer les temps d’exécution.

(b) (facultatif) Expliquer comment vérifier numériquement que les complexités trouvées aux questions
1c et 2c sont correctes.

Exercice 2. Concaténations de chaînes de caractères
Dans cet exercice, on souhaite calculer la chaîne de caractères obtenue en concaténant toutes les chaînes

de caractères d’une liste. Par exemple, à partir de L1 ou de L2, on obtient "Le cheval c’est genial" :

L1 = ["L","e"," ","c","h","e","v","a","l"," ","c","’","e","s","t"," ","g","e","n","i","a","l"]
L2 = ["Le ","ch","","eva","l"," ","c’est gen","ial",""]

1

Soit concat la fonction suivante :
1 def concat(L):
2 """concat(L: list[str]) -> str"""
3 C = [""]
4 for s in L:
5 C.append(C[-1] + s)
6 return C[-1]

1. (a) (facultatif) On numérote les tours de boucle de 0 à len(L)-1. Au début du tour de boucle numéro
k, déterminer la valeur de C[−1] en fonction de L.

(b) (facultatif) Dans le cas où toutes les chaînes de caractères de L sont de taille 1, montrer que la
fonction concat s’exécute en temps quadratique en len(L). Rappel : étant données deux chaînes
de caractères s1 et s2, la concaténation s1 + s2 se calcule en temps O

(
len(s1) + len(s2)

)
.

Pour obtenir un algorithme dichotomique, l’idée est de diviser la taille de la liste par 2 (environ) à chaque
étape. Pour cela, on concatène les chaînes de caractères deux par deux jusqu’à ce que la liste soit de taille
1. Par exemple, voici l’évolution de la liste L1 :

["L","e"," ","c","h","e","v","a","l"," ","c","’","e","s","t"," ","g","e","n","i","a","l"]
["Le"," c","he","va","l ","c’","es","t ","ge","ni","al"]
["Le c","heva","l c’","est ","geni","al"]
["Le cheva","l c’est ","genial"]
["Le cheval c’est ","genial"]
["Le cheval c’est genial"]

2. (a) Donner le pseudo-code de cet algorithme dichotomique.
(b) Écrire la fonction « concat_dicho(L: list[str]) -> str » correspondante.

3. (facultatif) Supposons que toutes les chaînes de caractères de L soient de taille 1 et que len(L) soit
de la forme 2k avec k ∈ N. Dans les questions qui suivent, “un tour de boucle” consiste à diviser la
taille de la liste par 2.
(a) (facultatif) Déterminer le nombre de tours de boucle dans la fonction concat_dicho. Justifier.
(b) (facultatif) Montrer que le temps d’exécution d’un tour de boucle lors d’un appel à concat_dicho(L)

est linéaire en len(L). Justifier.
(c) (facultatif) En déduire le temps d’exécution de la fonction concat_dicho.

4. Vérifier à l’aide de tests que la fonction concat_dicho est plus rapide que la fonction concat.

Exercice 3. Nombre d’occurrences dans une liste triée

1. Écrire une fonction qui prend en entrée une liste triée L ainsi qu’un entier x et renvoie le nombre
d’occurrences de x dans L. Votre fonction devra être de complexité logarithmique en len(L).

2. Écrire une fonction qui prend en entrée une liste triée L ainsi qu’un indice i et renvoie le nombre
d’occurrences de L[i] dans L. Votre fonction devra être de complexité logarithmique en m où m est la
valeur renvoyée.

Exercice 4. Trichotomie (épreuve 2019 du concours e3A)
Le but de la recherche par trichotomie est le même que celui de la recherche par dichotomie : étant

donnés un entier x et une liste triée L, il s’agit de déterminer si x appartient à L. Dans la recherche par
dichotomie, la taille de la sous-liste dans laquelle on recherche x est divisée par 2 (ou plus) à chaque étape.
Une recherche par trichotomie suit le même principe, mais la taille de la sous-liste est divisée par 3 (ou plus)
à chaque étape.

1. Écrire une fonction « appartient_tricho(L: list[int], x: int) -> bool » qui indique si x ap-
partient à L.

2

Exercices à rendre au plus tard le 11/01/2026 à 20h

Exercice 5. Méthode join pour les chaînes de caractères
Écrire une fonction de signature « join(sep: str, L: list[str]) -> str » qui renvoie la concaté-

nation des éléments de L séparés par sep. Par exemple :

join(" ", ["J’aime","l’informatique"]) vaut "J’aime l’informatique"
join("––", ["toto","titi","tata"]) vaut "toto––titi––tata"
join("", ["Mots", "Sans", "Espace"]) vaut "MotsSansEspace"
join("...", ["a","b","c","d","e","f"]) vaut "a...b...c...d...e...f"
join("–-", []) vaut ""

Remarque. En réalité, join existe déjà en Python : il suffit d’écrire sep.join(L). Bien sûr vous n’avez
pas le droit d’utiliser cette méthode dans cet exercice.

Remarque. Si on définit « s = join(" ", ["J’aime","l’informatique"]) », alors :
→ s[0] vaut 'J' et pas '"'.
→ s[-1] vaut 'e' et pas '"'.
→ len(s) vaut 21 et pas 23.

Exercice 6. Méthode split pour les chaînes de caractères
Écrire une fonction de signature « split(s: str) -> list[str] » qui renvoie la liste constituée des

mots de s. Par exemple :

split("Ceci est un test") vaut ["Ceci", "est", "un", "test"]
split("Avec six espaces") vaut ["Avec", "six", "espaces"]
split("UnSeulMot") vaut ["UnSeulMot"]
split(" test ") vaut ["test"]
split("") vaut []

Si besoin, on pourra lire les indications ci-dessous.

Remarque. En réalité, split existe déjà en Python : il suffit d’écrire s.split(). Bien sûr vous n’avez
pas le droit d’utiliser cette méthode dans cet exercice.

Indications (essayez de résoudre l’exercice sans lire ce qui suit).
1. À l’aide d’une boucle while, écrire une fonction de signature « debut_mot(s: str, i: int) ->

int » qui renvoie le plus petit indice j ⩾ i tel que s[j] n’est pas un espace. Si pour tout j ⩾ i, le
caractère s[j] est un espace, votre fonction renverra len(s). Par exemple, avec s = " a bc d ", on
obtient :

i 0 1 2 3 4 5 6 7 8
debut_mot(s,i) 1 1 3 3 4 6 6 8 8

2. À l’aide d’une boucle while, écrire une fonction de signature « fin_mot(s: str, i: int) -> int »
qui renvoie le plus petit indice j ⩾ i tel que s[j] est un espace. Si pour tout j ⩾ i, le caractère s[j]
n’est pas un espace, votre fonction renverra len(s). Par exemple, avec s = " a bc d ", on obtient :

i 0 1 2 3 4 5 6 7 8
fin_mot(s,i) 0 2 2 5 5 5 7 7 8

3. À l’aide des fonctions précédentes, écrire la fonction split.

3

Exercice 7. Approximation de
√

2 par dichotomie

Soit ε > 0 un réel. Notre but est de
donner une approximation de

√
2 à ε-près,

c’est à dire de calculer un nombre x tel que
|x −

√
2| ⩽ ε. La difficulté est que les seules

opérations autorisées sont l’addition, la sous-
traction, la multiplication et la division (en
particulier, vous ne pouvez pas utiliser l’opé-
rateur **0.5 de Python ou la fonction sqrt
du module math). Pour cela, on va construire
des intervalles I0, I1, I2, . . . tels que pour tout
k ∈ N, on ait

√
2 ∈ Ik et Ik+1 soit au moins

deux fois plus petit que Ik.

1 1,25 1,5 2

Soit f la fonction x 7→ x2 − 2. Les intervalles Ik sont définis par récurrence :

→ On pose I0 = 1 ; 2 .
→ Soit k ∈ N. Supposons que l’intervalle Ik ait été construit et construisons l’intervalle Ik+1. Pour cela,

on note ak et bk les bornes de Ik, c’est à dire que Ik = ak ; bk . Comme
√

2 ∈ Ik, on a :

f(ak) ⩽ 0 et f(bk) ⩾ 0.

On pose mk = ak + bk

2 , alors :

- Si f(mk) = 0, alors Ik+1 est défini par Ik+1 = mk ; mk .
- Si f(mk) > 0, comme f(ak) ⩽ 0 et que la fonction f est continue, alors elle s’annule sur l’intervalle

ak ; mk . On pose donc Ik+1 = ak ; mk ce qui garantit que
√

2 ∈ Ik+1.
- Si f(mk) < 0, comme f(bk) ⩾ 0 et que la fonction f est continue, alors elle s’annule sur l’intervalle

mk ; bk . On pose donc Ik+1 = mk ; bk ce qui garantit que
√

2 ∈ Ik+1.

Soit k ∈ N le plus petit entier tel que l’intervalle Ik = ak ; bk soit de taille inférieure ou égale à 2ε ; alors
le réel x0 = ak + bk

2 est une approximation de
√

2 à ε-près.

1. Écrire une fonction approx_sqrt2 qui prend en entrée un flottant epsilon et renvoie le réel x0 défini
ci-dessus.

2. Facultatif. Donner en le justifiant le nombre exact de tours de boucle en fonction de ε. On pourra
supposer que la condition f(mk) = 0 n’est jamais vérifiée. On attend une réponse sous la forme d’une
formule mathématiques, pas d’un programme.

4

	Ex 1- Exponentiation rapide
	Ex 2- Concaténations de chaînes de caractères
	Ex 3- Nombre d'occurrences dans une liste triée
	Ex 4- Trichotomie (épreuve 2019 du concours e3A)
	Ex 5- Méthode join pour les chaînes de caractères
	Ex 6- Méthode split pour les chaînes de caractères
	Ex 7- Approximation de 2 par dichotomie

