TP 10 d’informatique - MPSI - Algorithmes dichotomiques - 06/01/2026

Vocabulaire.
— Un pseudo-code est la description (en frangais) d’un algorithme.

— Une tmplémentation est un programme écrit en Python permettant d’exécuter un algorithme.

Exercice 1. Exponentiation rapide

Le but de I'exercice est de calculer ™ ou n € N et z € R a l'aide d’un algorithme dichotomique. Dans
tout 'exercice, il est interdit d’utiliser I'opérateur **.
1. Commencons par implémenter ['algorithme naif de mise a la puissance.
(a) Donner un pseudo-code permettant d’obtenir 2™ & laide de n tours de boucle.
(b) Ecrire une fonction puiss qui implémente cet algorithme.
(¢) Quelle est la complexité de votre fonction ?

Pour calculer 2™ a l’aide d’une dichotomie, I’idée est de diviser la valeur de n par 2 a chaque tour de
boucle. Pour cela, nous utiliserons la relation :

" =1 sin=0
a" = (x2)"/? sin > 0 est pair (1)
2" =z x (%) /2 sin > 0 est impair

Par exemple, pour calculer 22! :

P m

22 =1 x (2% 1 21
=2 x (4)1° 2 4 10
=2 x (16)° 2 16 5

= 32 x (256)> 32 256 2
=32 x (65 536)! 32 65 536 1

= 2097 152 x (4 294 967 296)° 2097152 | 4294967 296 0

Dans les calculs qui précedent, chaque égalité (sauf la premiere) s’obtient grace a I'une des relations de
léquation (1). Les étapes du calcul sont caractérisées par trois variables p, y et m comme présenté dans le
tableau. Cet algorithme peut étre qualifié de “dichotomique” car la valeur de m est divisée par 2 (au moins)
a chaque itération.

2. (a) Donner un pseudo-code permettant de calculer 2™ & l'aide d’une exponentiation rapide. Vous

devez bien stir utiliser le principe décrit ci-dessus en manipulant trois variables p, y et m.
(b) Ecrire une fonction puiss_dicho qui implémente cet algorithme.
(c¢) (facultatif) Quelle est la complexité de votre fonction ?

3. (a) Vérifier a 'aide de tests que la fonction puiss_dicho est plus rapide que la fonction puiss. On
pourra utiliser la fonction perf_counter du module time pour mesurer les temps d’exécution.

(b) (facultatif) Expliquer comment vérifier numériquement que les complexités trouvées aux questions
lc et 2c sont correctes.

Exercice 2. Concaténations de chaines de caracteéres

Dans cet exercice, on souhaite calculer la chaine de caracteres obtenue en concaténant toutes les chaines
de caracteres d’une liste. Par exemple, a partir de L1 ou de L2, on obtient "Le cheval c’est genial" :

Ll = [lILll’Ilell’Il |I’IICII’llhll’llell’llvll’llall’lllll’ll II’IICII’lI)Il’llell’llsll’lltll’ll Il’llgll’llell’Ilnll’Ilill’llall’lllll]

L2 = [IILe ","Ch","","eVa","l"," II’IIC)eSt genll,llialll,llll]

Soit concat la fonction suivante : . | def concat(L):
2 ""vconcat(L: list[str]) -> str"""
3 c=1[""]
4 for s in L:
5 C.append(C[-1] + s)
6 return C[-1]

1. (a) (facultatif) On numérote les tours de boucle de 0 & 1en(L)-1. Au début du tour de boucle numéro
k, déterminer la valeur de C[—1] en fonction de L.

(b) (facultatif) Dans le cas ou toutes les chaines de caractéres de L sont de taille 1, montrer que la

fonction concat s’exécute en temps quadratique en 1len(L). Rappel : étant données deux chaines

de caracteres s1 et s2, la concaténation s1 + s2 se calcule en temps O(len(sl) + len(sQ)).

Pour obtenir un algorithme dichotomique, 1'idée est de diviser la taille de la liste par 2 (environ) a chaque
étape. Pour cela, on concatene les chaines de caracteres deux par deux jusqu’a ce que la liste soit de taille
1. Par exemple, voici ’évolution de la liste L1 :

["L", e, ", "c","h", e, "y", Mal, 1", e, o el gl gt 1 gt gl it g g ngn]
["Le"," c","he","va","1 ","c’","es","t ","ge","ni","al"]

["Le c¢","heva","l c’","est ","geni","al"]

["Le cheva","l c’est ","genial"]

["Le cheval c’est ","genial"]

["Le cheval c’est genial"]

2. (a) Donner le pseudo-code de cet algorithme dichotomique.

(b) Ecrire la fonction « concat_dicho(L: list[str]) -> str » correspondante.

3. (facultatif) Supposons que toutes les chaines de caractéres de L soient de taille 1 et que len(L) soit
de la forme 2¥ avec k € N. Dans les questions qui suivent, “un tour de boucle” consiste & diviser la
taille de la liste par 2.

(a) (facultatif) Déterminer le nombre de tours de boucle dans la fonction concat_dicho. Justifier.

(b) (facultatif) Montrer que le temps d’exécution d’un tour de boucle lors d’un appel & concat_dicho (L)
est linéaire en len(L). Justifier.

(c¢) (facultatif) En déduire le temps d’exécution de la fonction concat_dicho.

4. Vérifier a ’aide de tests que la fonction concat_dicho est plus rapide que la fonction concat.

Exercice 3. Nombre d’occurrences dans une liste triée

1. Ecrire une fonction qui prend en entrée une liste triée L ainsi qu’un entier x et renvoie le nombre
d’occurrences de x dans L. Votre fonction devra étre de complexité logarithmique en len(L).

2. Ecrire une fonction qui prend en entrée une liste triée L ainsi qu'un indice i et renvoie le nombre
d’occurrences de L[i] dans L. Votre fonction devra étre de complexité logarithmique en m ot m est la
valeur renvoyée.

Exercice 4. Trichotomie (épreuve 2019 du concours e3A)

Le but de la recherche par trichotomie est le méme que celui de la recherche par dichotomie : étant
donnés un entier x et une liste triée L, il s’agit de déterminer si x appartient & L. Dans la recherche par
dichotomie, la taille de la sous-liste dans laquelle on recherche x est divisée par 2 (ou plus) a chaque étape.
Une recherche par trichotomie suit le méme principe, mais la taille de la sous-liste est divisée par 3 (ou plus)
a chaque étape.

1. Ecrire une fonction « appartient_tricho(L: list[int], x: int) -> bool » qui indique si x ap-
partient a L.

Exercices a rendre au plus tard le 11/01/2026 a 20h

Exercice 5. Méthode join pour les chaines de caracteres

Ecrire une fonction de signature « join(sep: str, L: list[str]) -> str » qui renvoie la concaté-

nation des éléments de L séparés par sep. Par exemple :

join(" ", ["J’aime","1’informatique"])
join("--", ["toto","titi","tata"])
join("", ["Mots", "Sans", "Espace"])
join("...", ["a","b","c","d","e","f"])
join("--", [1)

Remarque. En réalité, join existe déja en Python :

pas le droit d’utiliser cette méthode dans cet exercice.

Remarque. Sion définit « s = join(" ",
— s[0] vaut 'J' et pas '"".
— s[-1] vaut 'e' et pas '""'.

— len(s) vaut 21 et pas 23.

vaut

vaut

vaut

vaut

vaut

"J’aime 1’informatique"

"toto--titi--tata"

"MotsSansEspace"
.b..

"a..

.C..

.d...e...f"

il suffit d’écrire sep. join(L). Bien siir vous n’avez

["J’aime","1’informatique"]) », alors :

Exercice 6. Méthode split pour les chaines de caracteres

Ecrire une fonction de signature « split(s: str) -> list[str] » qui renvoie la liste constituée des

mots de s. Par exemple :

split("Ceci est un test")

split("Avec six espaces")
split ("UnSeulMot")

split(" test ")

split("")

Si besoin, on pourra lire les indications ci-dessous.

Remarque.

pas le droit d’utiliser cette méthode dans cet exercice.

vaut
vaut
vaut
vaut

vaut

En réalité, split existe déja en Python :

[Ilcecill, IIeStll, ||unll,

["AVGC" s "SiX" s
["UnSeulMot"]

["test n]
(]

"test n]

"espaces"]

il suffit d’écrire s.split (). Bien stir vous n’avez

Indications (essayez de résoudre l’exercice sans lire ce qui suit).

1. A laide d’une boucle while, écrire une fonction de signature « debut_mot(s: str, i: int) ->
int » qui renvoie le plus petit indice j > i tel que s[j] n’est pas un espace. Si pour tout j > i, le
caractere s[j] est un espace, votre fonction renverra len(s). Par exemple, avecs = " a bc d ", on

obtient :

i

1

2

3

4

5

6

7

8

debut_mot(s,i)

1

1

3

3

4

6

6

8

8

2. A Daide d’une boucle while, écrire une fonction de signature « fin_mot(s: str, i:

int) -> int »

qui renvoie le plus petit indice j > 1 tel que s[j] est un espace. Si pour tout j > i, le caractere s[j]
n’est pas un espace, votre fonction renverra len(s). Par exemple, avec s = " a bc d ", on obtient :

i

0

1

2

3

4

5

6

7

8

fin mot(s,i)

0

2

5

5

5

7

7

8

3. A l'aide des fonctions précédentes, écrire la fonction split.

Exercice 7. Approximation de /2 par dichotomie

Soit € > 0 un réel. Notre but est de
donner une approximation de /2 & e-pres,
c’est a dire de calculer un nombre x tel que
|z — v/2| < e. La difficulté est que les seules
opérations autorisées sont I'addition, la sous-
traction, la multiplication et la division (en
particulier, vous ne pouvez pas utiliser ’opé-
rateur **0.5 de Python ou la fonction sqrt
du module math). Pour cela, on va construire
des intervalles Iy, Iy, Is, . . . tels que pour tout
k € N, on ait V2 € I, et I 41 soit au moins
deux fois plus petit que Ij.

Soit f la fonction x — x? — 2. Les intervalles I;, sont définis par récurrence :
— On pose Iy =[1;2].

— Soit k € N. Supposons que l'intervalle Iy, ait été construit et construisons l'intervalle I; 1. Pour cela,
on note ay, et by les bornes de I, c’est & dire que I, =[ay ;b |. Comme /2 € I, on a :

f(ak) <0 et f(bk) > 0.

ag + by
2
- Si f(my) =0, alors Iy y1 est défini par I}, 1 = [mg;my |.

On pose my = , alors :

[ap;my]. On pose donc Iy =[ay;my]| ce qui garantit que v/2 € Iy;.
- Si f(mg) < 0, comme f(bg) > 0 et que la fonction f est continue, alors elle s’annule sur 'intervalle
[my ; by,]. On pose donc Iy =[my ;b | ce qui garantit que /2 € Ijo;.

f(mi)

- Si f(mg) > 0, comme f(ag) < 0 et que la fonction f est continue, alors elle s’annule sur 'intervalle
].
)

Soit k € N le plus petit entier tel que I'intervalle I, = [ay ; by | soit de taille inférieure ou égale & 2¢; alors

ar + bi

le réel xo = est une approximation de v/2 & e-preés.

1. Ecrire une fonction approx_sqrt2 qui prend en entrée un flottant epsilon et renvoie le réel o défini
ci-dessus.

2. Facultatif. Donner en le justifiant le nombre exact de tours de boucle en fonction de €. On pourra
supposer que la condition f(my) = 0 n’est jamais vérifiée. On attend une réponse sous la forme d’une
formule mathématiques, pas d’un programme.

	Ex 1- Exponentiation rapide
	Ex 2- Concaténations de chaînes de caractères
	Ex 3- Nombre d'occurrences dans une liste triée
	Ex 4- Trichotomie (épreuve 2019 du concours e3A)
	Ex 5- Méthode join pour les chaînes de caractères
	Ex 6- Méthode split pour les chaînes de caractères
	Ex 7- Approximation de 2 par dichotomie

