
TP 10 d’informatique - MPSI - Correction

Exercice 1. Exponentiation rapide

Question 1.a – On adopte la stratégie suivante :

p← 1
pour i = 1 à n faire

p← p× x
fin pour
renvoyer p

Question 1.b –

def puiss(x, n):
"""
puiss(x: float, n: int) -> float
Hypothese: n >= 0
"""
p = 1
for _ in range(n):

p = p*x
return p

Question 1.c – Il y a n tours de boucle et chaque tour s’exécute en temps constant, donc :

La complexité est linéaire en n.

Question 2.a – On adopte la stratégie suivante :

p← 1, y ← x, m← n.
tant que m ̸= 0 faire

si m est impair alors
p← p× y

fin si
y ← y × y

m←
⌊

m

2

⌋
fin tant que
renvoyer p

Question 2.b –

def puiss_dicho(x, n):
"""
puiss_dicho(x: float, n: int) -> float
Hypothese: n >= 0
"""
p = 1; y = x; m = n
while m != 0:

i f m % 2 == 1:
p = p*y

y = y*y
m = m//2

return p
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Question 2.c – On a une complexité logarithmique en n
Pour le montrer, il suffit de compter le nombre de tours de boucle. On procède comme pour la recherche

dichotomique dans une liste triée (voir cours). On numérote les tours de boucle par 1, 2, . . ., K où K ∈ N
est le nombre de tours. Par une récurrence immédiate, au début du tour numéro k ∈ {1, 2, . . . , K}, la valeur
de la variable m notée mk vérifie :

mk ⩽
n

2k−1 .

Pour k0 =
⌈

log2(n)
⌉

+ 2, on a mk0 ⩽ 1/2. Donc il y a au plus k0 − 1 tours de boucle.

Question 3.a – On doit choisir un n relativement grand pour voir une différence entre les deux implémen-
tations, mais il faut aussi que |xn| soit petit. En effet, si |xn| est grand (par exemple si on prend x = 2) alors
le temps d’exécution sera altéré par le fait que la multiplication de deux grands entiers prend du temps.

On choisit de calculer xn où x est un flottant aléatoire de 1 ; 1 + 1/n . Notons que les quantités mises
en jeu restent petites :

|xn| ⩽
(

1 + 1
n

)n

< e

import time, random
TPS_TEST = 1 # Chaque test dure au moins 1 seconde

def test_puiss(n, dicho): # dicho = True ou False
tps_ini = time.perf_counter()
nb_tests = 0
while time.perf_counter() < tps_ini + TPS_TEST:

nb_tests += 1
x = random.uniform(1,1+1/n)
i f dicho:

_ = puiss_dicho(x,n)
else:

_ = puiss(x,n)
tps_moyen = (time.perf_counter() - tps_ini)/nb_tests
return tps_moyen, nb_tests

print("-"*30)
print("Fonction puiss")
print("valeur de n (temps moyen d'un test, nombre de tests effectués)")
for n in [10**i for i in range(2,9)]:

print(n, test_puiss(n, False))

print("-"*30)
print("Fonction puiss_dicho")
print("valeur de n (temps moyen d'un test, nombre de tests effectués)")
for n in [10**i for i in range(2,9)]:

print(n, test_puiss(n, True))

Question 3.b – On remarque que :
→ Lorsque n est mutiplié par 10, le temps d’exécution de puiss est (approximativement) multiplié par

10. Ce qui correspond bien à une complexité linéaire.
→ Lorsque n est mutiplié par 10, une quantité (approximativement) constante est ajoutée au temps

d’exécution de puiss_dicho. Ce qui correspond bien à une complexité logarithmique.
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Exercice 2. Concaténations de chaînes de caractères

Question 1.a – Au début du tour de boucle numéro k = 0, on a C[-1] = "". Pour k > 0 :

C[−1] = L[0] + L[1] + . . . + L[k − 1].

Question 1.b – Dans la fonction, il y a n = len(L) tours de boucle. Au tour de boucle numéro k, on
concatène une chaîne de taille k avec une chaîne de taille 1. Comme k ⩽ n, le temps d’exécution du tour de
boucle numéro k est en O(n).

La complexité finale est bien quadratique en n

Question 2.a – L’algorithme est le suivant :

si L est vide alors
renvoyer ""

fin si
tant que L n’est pas de taille 1 faire

Soit M une liste vide
pour i = 0 à len(L)//2-1 faire

Ajouter L[2*i] + L[2*i+1] à la fin de M
fin pour
si len(L) est impaire alors

Ajouter L[-1] à la fin de M
fin si
Remplacer L par M

fin tant que
renvoyer L[0]

Question 2.b –

def concat_dicho(L):
i f len(L) == 0:

return ""
while len(L) > 1:

M = []
for i in range(len(L)//2):

M.append(L[2*i] + L[2*i+1])
i f len(L) % 2 == 1:

M.append(L[-1])
L = M

return L[0]

Question 3.a – Montrons que lorsque la liste L initiale est de taille 2k, le nombre de tours de boucle est k.
Soit N le nombre de tours de boucle et n la taille initiale de la liste L. On numérote les tours de 0 à N − 1.
Au début du ième tour, la taille de la liste est n/2i (se montre facilement par récurrence sur i). Ainsi, au
début du tour k − 1, la liste est de taille :

n

2k−1 = 2k

2k−1 = 2

Donc, à la fin du tour k − 1, la liste est de taille 1.

Le nombre de tours de boucle est donc égal à k
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Question 3.b – Soit L la liste donnée en argument de la fonction, soit M la liste créée lors d’un tour de
la boucle while. Pour exécuter ce tour, on a besoin de créer les chaînes de caractères M[0], M[1], . . .,
M[len(M)-1]. Le temps d’exécution est donc proportionnel à :

len(M)−1∑
i=0

len(M[i])

Or, on sait que les deux chaînes de caractères suivantes sont égales :
M[0] + M[1] + . . . + M[len(M) − 1] L[0] + L[1] + . . . L[len(L) − 1]

Donc :
len(M)−1∑

i=0

len(M[i])= len
(

M[0] + M[1] + . . . + M[len(M) − 1]
)

= len
(

L[0] + L[1] + . . . + L[len(L) − 1]
)

=
len(L)−1∑

i=0

len(L[i])

=
len(L)−1∑

i=0

1

= len(L)

Finalement, le temps d’exécution d’un tour de la boucle while est linéaire en len(L)

Question 3.c – En combinant les résultats des deux questions précédentes :

Le temps d’exécution d’un appel à concat_dicho(L) est en O(n log(n)) où n est la taille de L

Question 4 –

import time, random
TPS_TEST = 1 # Chaque test dure au moins 1 seconde

def test_concat(n, dicho): # dicho = True ou False
tps_ini = time.perf_counter()
nb_tests = 0
i_min = ord("a"); i_max = ord("z")
while time.perf_counter() < tps_ini + TPS_TEST:

nb_tests += 1
L = [chr(random.randint(i_min, i_max)) for _ in range(n)]
i f dicho:

_ = concat_dicho(L)
else:

_ = concat(L)
tps_moyen = (time.perf_counter() - tps_ini)/nb_tests
return tps_moyen, nb_tests

print("-"*30)
print("Fonction concat")
print("taille liste (temps moyen d'un test, nombre de tests effectués)")
for n in [10**i for i in range(2,6)]:

print(n, test_concat(n, False))

print("-"*30)
print("Fonction concat_dicho")
for n in [10**i for i in range(2,6)]:

print(test_concat(n, True))
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Exercice 3. Nombre d’occurrences dans une liste triée

Question 1 –

def indice_geq_min(L, x, i_min, i_max):
"""
indice_geq_min(L: list[int], x: int, i_min: int, i_max: int) -> int
-----------------
geq = greater or equal.
Renvoie le plus petit indice i compris entre i_min et i_max tel que L[i] >=
x. En particulier, si x apparait dans L, la fonction renvoie le plus petit
indice tel que L[i] == x. Si tous les elements de L sont < x alors renvoie
i_max+1.
"""
i = i_min
j = i_max
while i <= j:

m = (i+j)//2
i f L[m] >= x:

j = m-1
else:

i = m+1
return i

def indice_leq_max(L, x, i_min, i_max):
"""
indice_leq_max(L: list[int], x: int, i_min: int, i_max: int) -> int
-----------------
leq = less or equal.
Renvoie le plus grand indice i compris entre i_min et i_max tel que L[i] <=
x. En particulier, si x apparait dans L, la fonction renvoie le plus grand
indice tel que L[i] == x. Si tous les elements de L sont > x alors renvoie
i_min-1.
"""
i = i_min
j = i_max
while i <= j:

m = (i+j)//2
i f L[m] > x: # Différence avec la fonction précédente

j = m-1
else:

i = m+1
return j # Différence avec la fonction précédente

def nb_occ(L, x):
"""nb_occ(L: list[int], x: int) -> int"""
i0 = indice_geq_min(L, x, 0, len(L)-1)
i1 = indice_leq_max(L, x, 0, len(L)-1)
return i1 - i0 + 1
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Question 2 – Soient i0 et i1 le plus petit indice et le plus grand indice tels que L[i] == L[i0] et L[i]
== L[i1]. On va dans un premier temps calculer un encadrement de i0 et de i1, puis calculer le nombre
d’occurrences en utilisant les arguments i_min et i_max des fonctions indice_geq_min et indice_leq_max.

Pour trouver l’encadrement sur i0, on regarde la valeur de L[i − 2k] en augmentant la valeur de k.
Lorsqu’on sort de la liste, ou bien que L[i − 2k]! = L[i], on obtient notre encadrement.

def encadrement_i0(L, i):
"""
encadrement_i0(L: list[int], i: int) -> int
Renvoie un encadrement du plus petit indice i0 tel que L[i0] == L[i].
Hypothese: i est un indice valide pour L
"""
k = 0
while True:

i_min = i - 2**k
i f i_min < 0 or L[i_min] != L[i]:

break
k += 1

i f i_min < 0:
i_min = 0

else:
i_min += 1

i f k == 0:
return i_min, i

else:
return i_min, i - 2**(k-1)

def encadrement_i1(L, i):
"""
encadrement_i1(L: list[int], i: int) -> int
Renvoie un encadrement du plus grand indice i1 tel que L[i1] == L[i].
Hypothese: i est un indice valide pour L
"""
k = 0
while True:

i_max = i + 2**k
i f i_max >= len(L) or L[i_max] != L[i]:

break
k += 1

i f i_max >= len(L):
i_max = len(L)-1

else:
i_max -= 1

i f k == 0:
return i, i_max

else:
return i + 2**(k-1), i_max

def nb_occ_bis(L, i):
"""nb_occ_bis(L: list[int], i: int)"""
i_min_i0, i_max_i0 = encadrement_i0(L, i)
i_min_i1, i_max_i1 = encadrement_i1(L, i)
i1 = indice(L, L[i], i_min_i0, i_max_i0, True)
i2 = indice(L, L[i], i_min_i1, i_max_i1, False)
return i2 - i1 + 1
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Exercice 4. Trichotomie (épreuve 2019 du concours e3A)

Question 1 –

def appartient_tricho(L, x):
"""appartient_tricho(L: list[int], x: int) -> bool"""
i = 0
j = len(L)-1
while i <= j:

m1 = (2*i+j)//3
m2 = (i+2*j)//3
i f L[m1] == x or L[m2] == x:

return True
i f x < L[m1]:

j = m1-1
el i f x < L[m2]:

i = m1+1
j = m2-1

else:
i = m2+1

return False
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