
DS 3 d’informatique commune - MPSI - 12/02/2026

1 Préliminaires

1.1 Représentation d’ensembles d’entiers en Python
Soit A ⊂ N un ensemble d’entiers. En Python, on décide de représenter A par une liste triée sans

doublon. Par exemple, l’ensemble A = {0, 5, 8} est représenté par la liste [0, 5, 8]. En revanche,
A n’est pas représenté par [5, 0, 8] car cette liste n’est pas triée et n’est pas non plus représentée
par [0, 5, 5, 8] car cette liste contient des doublons.

1. (a) Écrire une fonction estTriee(A: list[int]) -> bool qui renvoie True si A est triée,
et False sinon. Voir le tableau ci-dessous pour des exemples.

(b) Quelle est la complexité de votre fonction ? Justifier.
2. (a) Compléter le code suivant pour obtenir une fonction

sansDoublV1(A: list[int]) -> bool

qui renvoie True si A ne contient pas de doublon, et False sinon. Voir le tableau ci-dessous
pour des exemples.

def sansDoublV1(A):
for i in range(...):

for j in range(...):
i f ... :

return ...
return ...

(b) Quelle est la complexité de votre fonction ? Justifier.
3. Écrire une fonction sansDoublV2(A: list[int]) -> bool qui renvoie True si A ne contient

pas de doublon, et False sinon. Votre fonction doit donc renvoyer le même résultat que
sansDoublV1, mais son temps d’exécution doit être en O(n) où n est la taille de A.

A [] [5] [1, 7] [0, 5, 8] [0, 5, 5, 8] [5, 0, 8] [0, 4, 8, 10, 0]

estTriee(A) True True True True True False False

sansDoublV1(A) True True True True False True False

sansDoublV2(A) True True True True False True False

Jusqu’à la fin du sujet, le type Python « ens » désignera une liste d’entiers triée sans doublon.
Par exemple, si une question vous demande d’écrire une fonction « f(A: ens) -> ens » cela signifie
que :

→ Vous pouvez supposer sans le vérifier que A est une liste d’entiers triée sans doublon.
→ Vous devez faire en sorte que votre fonction renvoie une liste d’entiers triée sans doublon.

1.2 Représentation de listes d’ensembles d’entiers en Python

À partir de maintenant, n ∈ N∗ et m ∈ N∗ sont deux entiers strictement positifs et A0, . . . , Am−1
sont des ensembles d’entiers. En Python, les Ai sont représentés par une liste de listes d’entiers « L:
list[ens] ». Par exemple avec :

n = 5 m = 4 A0 = {0, 4} A1 = {−1, 2} A2 = {} A3 = {−4, 0, 1, 2, 3}

on obtient la liste [[0,4], [-1,2], [], [-4,0,1,2,3]].

1



4. Écrire une fonction test(n: int, L: list[ens]) -> bool qui renvoie True si tous les en-
tiers présents dans L sont compris entre 0 et n-1, et False sinon. Voir le tableau ci-dessous
pour des exemples.

5. Écrire une fonction maxi(L: list[ens]) -> (int ou NoneType) qui renvoie le maximum
des entiers présents dans L. Si L ne contient aucun entier, votre fonction renverra None. Voir le
tableau ci-dessous pour des exemples.

L [] [[], []] [[0,4], [-1,2], [], [-4,0,1,2,3]] [[0,1,2,3], [2], [0,1,3]]

test(4, L) True True False (à cause de -4, -1 et 4) True

maxi(L) None None 4 3

1.3 Le problème de la couverture exacte
Le but de ce sujet est d’étudier le problème de la couverture exacte. Soit n ∈ N∗ et m ∈ N∗

deux entiers strictement positifs. Étant donnés des ensembles A0, . . . , Am−1 inclus dans J 0 ; n − 1 K,
le problème de la couverture exacte consiste à sélectionner certains des Aj pour que chaque entier
i ∈ J 0 ; n − 1 K apparaisse dans exactement un des Aj sélectionnés. Par exemple avec n = 7, m = 9
et :

A0 = {3}, A1 = {0, 1} A2 = {2, 6} A3 = {0, 3, 5} A4 = {0, 3, 4, 5, 6}
A5 = {0, 2, 3} A6 = {1, 3, 4} A7 = {2, 4, 5, 6} A8 = {2, 5}

L’unique solution du problème de la couverture exacte est S = {0, 1, 7}. En effet, chaque entier
i ∈ J 0 ; 6 K apparaît dans un et un seul des ensembles A0, A1, A7.

6. Donner sans justification les deux solutions au problème de la couverture exacte dans le cas où
n = 8, m = 6 et :

A0 = {1, 7} A1 = {4, 5, 6} A2 = {1, 2} A3 = {0, 3} A4 = {7} A5 = {2}

7. Écrire une fonction estSol(n: int, L: list[ens], S: ens) -> bool qui renvoie True si
S est une solution du problème de la couverture exacte, et False sinon. Ici :

• La liste L contient les ensembles A0, A1, . . . Am−1. Pour l’exemple ci-dessus, on a :

L = [[3], [0,1], [2,6], [0,3,5], [0,3,4,5,6],
[0,2,3], [1,3,4], [2,4,5,6], [2,5]]

• La liste S contient les indices j des ensembles Aj sélectionnés. Pour l’exemple ci-dessus,
on a S = [0,1,7].

On pourra supposer sans le vérifier que tous les entiers présents dans L sont compris entre 0 et
n-1. À des fins d’optimisation, chaque entier de L devra être vu au plus une fois.

2 Génération de tests aléatoires
L’objectif de cette partie est de générer des listes « L: list[ens] » à donner en entrée de la

fonction estSol de la question 7. On va d’abord créer une liste « A: ens » dans laquelle chaque
entier i ∈ J 0 ; n − 1 K apparaît avec une certaine probabilité p ∈ 0 ; 1 . Pour cela, on adopte la
stratégie suivante :

2



Pseudo-code 1
Entrées: n ∈ N∗ et p ∈ 0 ; 1
Sortie: A ⊂ J 0 ; n − 1 K

Initialement, A est vide.
pour chaque i ∈ J 0 ; n − 1 K faire

On ajoute i dans A avec probabilité p.
fin pour
Renvoyer A.

En particulier, si p = 0 (resp. p = 1), alors cette procédure renvoie nécessairement l’ensemble vide
(resp. l’ensemble J 0 ; n − 1 K).

En Python, on aura besoin de la fonction « random() -> float » qui renvoie un flottant choisi
aléatoirement dans l’intervalle 0 ; 1 . Cette fonction appartient au module random (notez que la
fonction et le module portent le même nom).

8. Quelle ligne doit-on écrire en Python pour pouvoir utiliser la fonction random ? On veut par
exemple que le code suivant s’exécute sans erreur :

x = random.random()
y = random.random()
print(x+y)

À partir de maintenant, on suppose que la ligne évoquée à la question 8 a été exécutée. Parmi toutes
les fonctions du module random, on s’autorise uniquement à utiliser la fonction random.

9. Écrire une fonction ensAlea(n: int, p: float) -> ens qui renvoie l’ensemble A comme
décrit dans le pseudo-code 1.

On souhaite construire une liste « L: list[ens] » de manière aléatoire.

Pseudo-code 2
Entrées: n ∈ N∗ et m ∈ N∗.
Sortie: une liste contenant des ensembles A0, A1, . . . Am−1 tous inclus dans J 0 ; n − 1 K.

pour chaque j ∈ J 0 ; m − 1 K faire
On choisit un flottant p ∈ 0.1 ; 0.5 aléatoire.
À l’aide du pseudo-code 1, on construit un ensemble Aj non vide.

fin pour
Renvoyer la liste contenant A0, A1, . . . Am−1.

10. Écrire une fonction listeEnsAlea(n: int, m: int) -> list[ens] qui renvoie une liste
d’ensembles comme décrit dans le pseudo-code 2. Attention : à chaque étape on doit avoir
p ∈ 0.1 ; 0.5 et Aj doit être non vide.

3 Le problème des dominos

3.1 Formulation du problème des dominos
Dans cette partie, on s’intéresse au “problème des dominos” qui peut s’exprimer comme un cas

particulier du problème de la couverture exacte.

3



0 1 2 3
4 5 6 7
8 9 1010 11
12 13 14 15

Figure 1 Figure 2 Figure 3 Figure 4

Soit k ∈ N∗ un entier, on s’intéresse à une grille composée de k lignes et k colonnes. Par exemple
pour k = 4, la grille contient 16 cases (voir la figure 1). Notre objectif est de recouvrir toutes les
cases de la grille avec des dominos, sachant que les dominos ne peuvent pas se chevaucher et que
chaque domino occupe deux cases adjacentes. Par exemple, pour paver une grille de côté k = 4 avec
8 dominos, plusieurs solutions existent (voir les figures 2, 3, 4).

11. Dessiner toutes les solutions du problème des dominos pour k = 2 (utilisez les carreaux de
votre feuille et une règle pour faire des dessins propres).

12. Quel est le nombre de solutions au problème des dominos lorsque k est impair ? Justifier.

On souhaite déterminer le nombre de solutions dans le cas où k = 4. Pour cela, on numérote les
16 cases de la grille de 0 à 15 comme dans la figure 1. On appelle “solution de type 1” une solution
dans laquelle la case 0 est recouverte par un domino vertical (qui recouvre donc les cases 0 et 4
comme dans la figure 5) et “solution de type 2” une solution où ce domino est horizontal (il recouvre
donc les cases 0 et 1 comme dans la figure 6).

Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Pour déterminer le nombre de solutions de type 1, on s’intéresse à la case numéro 2. Cette case
peut être recouverte de trois façons différentes (voir les figures 7, 8, 9).

13. (a) Dessiner les cinq façons de compléter le pavage de la figure 7.
(b) Quel est le nombre de façons de compléter le pavage de la figure 8 ? Justifiez succinctement

votre réponse.
(c) Même question avec la figure 9.

14. En déduire le nombre de solutions au problème des dominos lorsque k = 4.

3.2 Traduction du problème des dominos
Comme dans la partie précédente, k ∈ N∗ désigne le nombre de lignes et de colonnes dans la

grille. Pour traduire le problème des dominos en un problème de couverture exacte, on note n = k2

le nombre de cases dans la grille et m ∈ N∗ le nombre de positions possibles pour un domino. Les
cases de la grille sont alors numérotées de 0 à n − 1 de la gauche vers la droite et du haut vers le bas
comme dans la figure 1. Chaque position possible pour un domino est représentée par un ensemble de
cardinal 2 contenant les numéros des deux cases recouvertes par le domino. Par exemple, la position
du domino de la figure 10 correspond à l’ensemble {5, 6} et celle du domino de la figure 12 à l’ensemble
{1, 5}.

4



Figure 10 Figure 11 Figure 12 Figure 13

15. (a) Déterminer les ensembles correspondant aux dominos des figures 11 et 13.
(b) Déterminer en fonction de k la valeur de m (c’est à dire le nombre de placements possibles

pour un domino sur une grille de côté k). Justifier votre réponse.

16. Écrire une fonction posDom(k: int) -> list[ens] qui renvoie une liste de longueur m conte-
nant toutes les positions possibles pour un domino sur une grille de côté k.

Résoudre le problème des dominos sur une grille de côté k ∈ N∗ est alors équivalent à résoudre le
problème de la couverture exacte avec n = k2 et A0, . . . , Am−1 les ensembles de la liste renvoyée par
la fonction posDom.

4 Résolution du problème de la couverture exacte
Les notations utilisées dans cette partie sont les mêmes que dans la partie 1.3.

4.1 Méthode 1
Une solution au problème de la couverture exacte sera représentée par une liste « B: list[bool] »

de longueur m telle que B[j] vaut True lorsque l’ensemble Aj fait partie de la solution, et False
sinon. Pour résoudre le problème, on va tester toutes les possibilités. Il s’agit donc dans un premier
temps de générer toutes les listes de taille m contenant des True et des False.

17. Écrire une fonction generer(m: int) -> list[list[bool]] qui renvoie une liste contenant
une et une seule fois chaque liste de taille m contenant des True et des False. On pourra
supposer sans le vérifier que m ∈ N∗. Par exemple, pour m = 3, on obtient (l’ordre des sous-listes
n’a pas d’importance) :

[[False, False, False], [True, False, False],
[False, True, False], [True, True, False], [False, False, True],
[True, False, True], [False, True, True], [True, True, True]]

18. Écrire une fonction estSolBis(n: int, L: list[ens], B: list[bool]) -> bool qui in-
dique si B correspond à une solution au problème de la couverture exacte. On pourra supposer
sans le vérifier que les listes L et B sont toutes les deux de taille m.

19. En déduire une fonction toutesSolV1(n: int, L: list[ens]) -> list[ens] qui renvoie
la liste de toutes les solutions au problème de la couverture exacte. Pour l’exemple de la partie
1.3 où la seule solution était S = {0, 1, 7}, la fonction doit renvoyer [[0,1,7]].

4.2 Méthode 2
Dans cette partie, on suppose que les ensembles A0, . . . , Am−1 sont tous non vides. Dans le but
d’améliorer le temps de résolution du problème de la couverture exacte, on s’intéresse à la procédure
suivante :

5



Pseudo-code 3
Entrées: n ∈ N∗ et des ensembles A0, . . . , Am−1 inclus dans J 0 ; n − 1 K.
Sortie: Une solution au problème de la couverture exacte.

Initialement, S est vide.
pour chaque i ∈ J 0 ; n − 1 K faire

si ∀j ∈ S, i /∈ Aj alors
Soit J =

{
j1 ∈ J 0 ; m − 1 K : i ∈ Aj1 et (∀j2 ∈ S, Aj1 ∩ Aj2 = ∅)

}
si J = ∅ alors

On considère que l’exécution est un échec.
fin si
Choisir un indice j ∈ J .
Ajouter j dans S.

fin si
fin pour
Renvoyer S.

Notons que cette procédure a plusieurs exécutions possibles car, à chaque étape, le choix de l’indice
j ∈ J est arbitraire. On peut même se convaincre que toute solution au problème de la couverture
exacte s’obtient à partir d’une exécution de cette procédure avec un choix judicieux des indices j ∈ J .

20. En s’inspirant du pseudo-code 3, écrire une fonction

toutesSolV2(n: int, L: list[ens]) -> list[ens]

qui renvoie la liste de toutes les solutions au problème de la couverture exacte. Notez que
contrairement au pseudo-code 3, votre fonction doit renvoyer toutes les solutions au problème.
On essaiera d’obtenir la fonction la plus efficace possible et on expliquera succinctement la
procédure utilisée.

21. Écrire une fonction nbSolDom(k: int) -> int qui renvoie le nombre de solutions au pro-
blème des dominos étudié dans la partie 3.

6


	Préliminaires
	Représentation d'ensembles d'entiers en Python
	Représentation de listes d'ensembles d'entiers en Python
	Le problème de la couverture exacte

	Génération de tests aléatoires
	Le problème des dominos
	Formulation du problème des dominos
	Traduction du problème des dominos

	Résolution du problème de la couverture exacte
	Méthode 1
	Méthode 2


