DS 3 d’informatique commune - MPSI - 12/02/2026

1 Préliminaires

1.1 Représentation d’ensembles d’entiers en Python

Soit A C N un ensemble d’entiers. En Python, on décide de représenter A par une liste triée sans
doublon. Par exemple, I’ensemble A = {0, 5,8} est représenté par la liste [0, 5, 8]. En revanche,
A n’est pas représenté par [5, 0, 8] car cette liste n’est pas triée et n’est pas non plus représentée
par [0, 5, 5, 8] car cette liste contient des doublons.

et False sinon. Voir le tableau ci-dessous pour des exemples.
(b) Quelle est la complexité de votre fonction ? Justifier.
2. (a) Compléter le code suivant pour obtenir une fonction

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ~
!

-

qui renvoie True si A ne contient pas de doublon, et False sinon. Voir le tableau ci-dessous
pour des exemples.

def sansDoublV1(A):
for i in range(...):
for j in range(...):
if ...
return ...
return ...

(b) Quelle est la complexité de votre fonction 7 Justifier.

pas de doublon, et False sinon. Votre fonction doit donc renvoyer le méme résultat que
sansDoublV1, mais son temps d’exécution doit étre en O(n) ou n est la taille de A.

A (] (5] (t, 71 | o, 5, 81 | [0, 5, 5, 8] | [6, 0, 8] | [0, 4, 8, 10, O]
estTriee(A) True | True | True True True False False
sansDoublV1(A) | True | True True True False True False
sansDoublV2(A) | True | True True True False True False

Jusqu’a la fin du sujet, le type Python « ens » désignera une liste d’entiers triée sans doublon.
Par exemple, si une question vous demande d’écrire une fonction « £(A: ens) -> ens » cela signifie
que :

— Vous pouvez supposer sans le vérifier que A est une liste d’entiers triée sans doublon.

— Vous devez faire en sorte que votre fonction renvoie une liste d’entiers triée sans doublon.

1.2 Représentation de listes d’ensembles d’entiers en Python

A partir de maintenant, n € N* et m € N* sont deux entiers strictement positifs et Ay, . .., Am_1
sont des ensembles d’entiers. En Python, les A; sont représentés par une liste de listes d’entiers « L:
list[ens] ». Par exemple avec :

n=>5 m =4 A0:{0,4} Alz{—l,Q} AQZ{} A3:{—470,1,2,3}

on obtient la liste [[0,4], [-1,2], [1, [-4,0,1,2,3]].

t1ers présents dans L sont Compr1s entre 0 et n-1, et False sinon. Voir le tableau ci-dessous
pour des exemples

tableau ci-dessous pour des exemples.

L o ta, 01| tto,4], [-1,21, 0O, [-4,0,1,2,3]] | [[0,1,2,3], [2], [0,1,3]]
test(4, L) | True True False (a cause de -4, -1 et 4) True
maxi(L) None None 4 3

1.3 Le probléme de la couverture exacte

Le but de ce sujet est d’étudier le probléme de la couverture exacte. Soit n € N* et m € N*
deux entiers strictement positifs. Etant donnés des ensembles Ay, ..., A,,_; inclus dans [0;n — 1],
le probleme de la couverture exacte consiste a sélectionner certains des A; pour que chaque entier
i € [0;n — 1] apparaisse dans exactement un des A; sélectionnés. Par exemple avec n =7, m =9
et :

Ag = {3}7 Ay = {07 1} Ay = {27 6} Az = {Oa 3, 5} Ay = {07 3,4,9, 6}
A5 =10,2,3) Ag={1,3,4) A, ={2,456} A;={25)

L’unique solution du probléme de la couverture exacte est S = {0,1,7}. En effet, chaque entier
i € [0;6] apparait dans un et un seul des ensembles Ag, Ay, A7.

6. Donner sans justification les deux solutions au probleme de la couverture exacte dans le cas ou
n=8 m==06et:

Ap={1,7} A =1{4,56} A, ={1,2} A;={0,30 A, ={7} As=1{2}

S est une solution du probleme de la couverture exacte et False sinon. I(31

e La liste L contient les ensembles Ag, A1, ... A,,_1. Pour 'exemple ci-dessus, on a :

= ([3], [o,1], [2,6], [0,3,5], [0,3,4,5,6],
(0,2,31, [1,3,41, [2,4,5,6], [2,5]]

e La liste S contient les indices j des ensembles A; sélectionnés. Pour I'exemple ci-dessus,
ona$s = [0,1,7].

On pourra supposer sans le vérifier que tous les entiers présents dans L sont compris entre 0 et
n-1. A des fins d’optimisation, chaque entier de L devra étre vu au plus une fois.

2 Génération de tests aléatoires

L’objectif de cette partie est de générer des listes « L: list[ens] » a donner en entrée de la
fonction estSol de la question 7. On va d’abord créer une liste « A: ens » dans laquelle chaque
entier i € [0;n — 1] apparait avec une certaine probabilité p € [0;1]. Pour cela, on adopte la
stratégie suivante :

Pseudo-code 1
Entrées: ne N* et pe[0;1]
Sortie: AC [0;n—1]

Initialement, A est vide.
pour chaque i € [0;n — 1] faire
On ajoute ¢ dans A avec probabilité p.
fin pour
Renvoyer A.

En particulier, si p = 0 (resp. p = 1), alors cette procédure renvoie nécessairement I’ensemble vide
(resp. P'ensemble [0;n —1]).

En Python, on aura besoin de la fonction « random() -> float » qui renvoie un flottant choisi
aléatoirement dans I'intervalle [0 ; 1]. Cette fonction appartient au module random (notez que la
fonction et le module portent le méme nom).

8. Quelle ligne doit-on écrire en Python pour pouvoir utiliser la fonction random? On veut par
exemple que le code suivant s’exécute sans erreur :

x = random.random()
y = random.random()
print (x+y)

A partir de maintenant, on suppose que la ligne évoquée a la question 8 a été exécutée. Parmi toutes
les fonctions du module random, on s’autorise uniquement a utiliser la fonction random.

On souhaite construire une liste « L: list[ens] » de maniere aléatoire.

Pseudo-code 2
Entrées: n € N* et m € N*.
Sortie: une liste contenant des ensembles Ay, Ay, ... A,,—1 tous inclus dans [0;n —1].

pour chaque j € [0;m — 1] faire

On choisit un flottant p €[0.1;0.5 | aléatoire.

A Taide du pseudo-code 1, on construit un ensemble A; non vide.
fin pour
Renvoyer la liste contenant Ag, Ay, ... A;,_1.

,, ~

10. Ecrire une fonction 'listeEnsAlea(n: int, m: int) -> list [ens]l qui renvoie une liste

d’ensembles comme décrit dans le pseudo-code 2. Attention : a chaque étape on doit avoir
p €[0.1;0.5] et A; doit étre non vide.

3 Le probléeme des dominos

3.1 Formulation du probleme des dominos

Dans cette partie, on s’intéresse au “probléme des dominos” qui peut s’exprimer comme un cas
particulier du probleme de la couverture exacte.

0|1]2]3
415|617

——————— — — —
8 9 |10 | 11
12 (13|14 | 15
FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4

Soit k € N* un entier, on s’intéresse a une grille composée de k lignes et k colonnes. Par exemple
pour k = 4, la grille contient 16 cases (voir la figure 1). Notre objectif est de recouvrir toutes les
cases de la grille avec des dominos, sachant que les dominos ne peuvent pas se chevaucher et que
chaque domino occupe deux cases adjacentes. Par exemple, pour paver une grille de coté k = 4 avec
8 dominos, plusieurs solutions existent (voir les figures 2, 3, 4).

11. Dessiner toutes les solutions du probléeme des dominos pour k£ = 2 (utilisez les carreaux de
votre feuille et une regle pour faire des dessins propres).

12. Quel est le nombre de solutions au probléme des dominos lorsque k est impair ? Justifier.
On souhaite déterminer le nombre de solutions dans le cas ou k = 4. Pour cela, on numérote les
16 cases de la grille de 0 a 15 comme dans la figure 1. On appelle “solution de type 1”7 une solution
dans laquelle la case 0 est recouverte par un domino vertical (qui recouvre donc les cases 0 et 4

comme dans la figure 5) et “solution de type 2” une solution ou ce domino est horizontal (il recouvre
donc les cases 0 et 1 comme dans la figure 6).

IRk

FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9

Pour déterminer le nombre de solutions de type 1, on s’intéresse a la case numéro 2. Cette case
peut étre recouverte de trois fagons différentes (voir les figures 7, 8, 9).

13. (a) Dessiner les cinq fagons de compléter le pavage de la figure 7.

(b) Quel est le nombre de fagons de compléter le pavage de la figure 8 7 Justifiez succinctement
votre réponse.

(¢) Méme question avec la figure 9.

14. En déduire le nombre de solutions au probléeme des dominos lorsque k& = 4.

3.2 Traduction du probleme des dominos

Comme dans la partie précédente, k& € N* désigne le nombre de lignes et de colonnes dans la
grille. Pour traduire le probléme des dominos en un probléme de couverture exacte, on note n = k?
le nombre de cases dans la grille et m € N* le nombre de positions possibles pour un domino. Les
cases de la grille sont alors numérotées de 0 a n — 1 de la gauche vers la droite et du haut vers le bas
comme dans la figure 1. Chaque position possible pour un domino est représentée par un ensemble de
cardinal 2 contenant les numéros des deux cases recouvertes par le domino. Par exemple, la position
du domino de la figure 10 correspond a ’ensemble {5, 6} et celle du domino de la figure 12 & I’ensemble

{1,5}.

=1 T 0] F

FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13

15. (a) Déterminer les ensembles correspondant aux dominos des figures 11 et 13.

(b) Déterminer en fonction de k la valeur de m (c’est a dire le nombre de placements possibles
pour un domino sur une grille de c6té k). Justifier votre réponse.

Résoudre le probléeme des dominos sur une grille de c6té & € N* est alors équivalent a résoudre le
probléme de la couverture exacte avec n = k? et Ay, ..., A,,_1 les ensembles de la liste renvoyée par
la fonction posDom.

4 Reésolution du probléeme de la couverture exacte

Les notations utilisées dans cette partie sont les mémes que dans la partie 1.3.

4.1 Méthode 1

Une solution au probleme de la couverture exacte sera représentée par une liste « B: 1list[bool] »
de longueur m telle que B[j] vaut True lorsque 'ensemble A; fait partie de la solution, et False
sinon. Pour résoudre le probléme, on va tester toutes les possibilités. Il s’agit donc dans un premier
temps de générer toutes les listes de taille m contenant des True et des False.

supposer sans le vérifier que m € N*. Par exemple, pour m = 3, on obtient (I’ordre des sous-listes
n’a pas d’importance) :

[[False, False, False], [True, False, False],
[False, True, False], [True, True, False], [False, False, True],
[True, False, True], [False, True, True], [True, True, True]]

18. Ecrire une fonction [estSolBis(n: int, L: list[ens], B: list[bool]) —> boolj qui in-

dique si B correspond & une solution au probleme de la couverture exacte. On pourra supposer
sans le vérifier que les listes L et B sont toutes les deux de taille m.

19. En déduire une fonction [toutesSolVl (n: int, L: list[ens]) -> list [ens]j qui renvoie

la liste de toutes les solutions au probleme de la couverture exacte. Pour I'exemple de la partie
1.3 ot la seule solution était S = {0, 1,7}, la fonction doit renvoyer [[0,1,7]].

4.2 Méthode 2

Dans cette partie, on suppose que les ensembles Ag,...,A,,_1 sont tous non vides. Dans le but
d’améliorer le temps de résolution du probleme de la couverture exacte, on s’intéresse a la procédure
suivante :

Pseudo-code 3
Entrées: n € N* et des ensembles Ay, ..., A,,—; inclus dans [0;n — 1].
Sortie: Une solution au probleme de la couverture exacte.

Initialement, S est vide.
pour chaque i € [0;n — 1] faire
siVjeS,i¢ Ajalors
Soit J — {jl €[0:m—1]:i€ Ay et (Vo €S, A, N A, = @)}
si J = @ alors
On considere que 'exécution est un échec.
fin si
Choisir un indice j € J.
Ajouter 5 dans S.
fin si
fin pour
Renvoyer S.

Notons que cette procédure a plusieurs exécutions possibles car, a chaque étape, le choix de I'indice
j € J est arbitraire. On peut méme se convaincre que toute solution au probléme de la couverture
exacte s’obtient a partir d'une exécution de cette procédure avec un choix judicieux des indices j € J.

20. En s’inspirant du pseudo-code 3, écrire une fonction

[toutesSolVQ(n: int, L: list[ens]) -> list [ens]j
qui renvoie la liste de toutes les solutions au probleme de la couverture exacte. Notez que
contrairement au pseudo-code 3, votre fonction doit renvoyer toutes les solutions au probleme.
On essaiera d’obtenir la fonction la plus efficace possible et on expliquera succinctement la
procédure utilisée.

21. Ecrire une fonction [anolDom(k: int) -> intj qui renvoie le nombre de solutions au pro-

bleme des dominos étudié dans la partie 3.

	Préliminaires
	Représentation d'ensembles d'entiers en Python
	Représentation de listes d'ensembles d'entiers en Python
	Le problème de la couverture exacte

	Génération de tests aléatoires
	Le problème des dominos
	Formulation du problème des dominos
	Traduction du problème des dominos

	Résolution du problème de la couverture exacte
	Méthode 1
	Méthode 2

