
DS 3 d’informatique de l’année 2024/2025 - MPSI - Polyominos

Consignes :
⋆ Les calculatrices sont interdites. Numérotez vos feuilles et faites apparaître les questions dans l’ordre

du sujet.
⋆ Si vous repérez une erreur d’énoncé, signalez-le sur votre copie et poursuivez votre composition.
⋆ Les figures se trouvent sur la dernière page de ce document.

1. Introduction

Définition 1 (Informelle). Soit n ∈ N∗. Un n-omino est une forme géométrique connexe composée de n
carrés unitaires. Le terme “connexe” signifie que tous les carrés composant la figure sont connectés.

Exemple 2. Il existe un seul 1-omino (figure 1), deux 2-ominos (figure 2) et six 3-ominos (figure 3). La
figure 4 est un 5-omino, la figure 5 est un 12-omino, la figure 6 représente deux 7-ominos et la figure 7 est
un 12-omino. De plus, la forme de la figure 8 n’est pas un 4-omino car elle n’est pas connexe.

Définition 3. Une forme géométrique est un polyomino s’il existe un entier n ∈ N∗ tel que cette forme
soit un n-omino.

Exemple 4. Les formes des figures 1 à 7 sont des polyominos.

Définition 5. En Python, un n-omino est une liste de listes de booléens « P: list[list[bool]] » vérifiant
les conditions (C1), (C2), (C3) et (C4) :

(C1) P est non vide et ses sous-listes sont toutes de la même taille.
(C2) Exactement n cases de P contiennent True, les autres cases contiennent False.
(C3) Au moins une des cases de la première ligne de P contient un True. Idem pour la première colonne,

dernière ligne et dernière colonne.
(C4) L’ensemble des cases de P contenant True est connexe. Notez que le terme “connexe” sera défini

formellement dans la partie 2.b..

Exemple 6. Les polyominos de la figure 6 sont représentés par :

P1_fig6 = [
[True , True , True ],
[True , False, True ],
[True , False, True ]]

P2_fig6 = [
[False , True , True , True ],
[True , True , True , False],
[True , False, False, False]]

1. Donner la représentation Python du 12-omino de la figure 7.

2. Vérification des propriétés (C1) à (C4)

Le but de cette partie est de tester si une liste « P: list[list[bool]] » vérifie les conditions (C1) à (C4).
Ainsi, sauf indication contraire, on ne suppose pas que P satisfait l’une de ces quatre conditions.

2. Écrire une fonction afficher(P: list[list[bool]]) -> NoneType qui affiche P en remplaçant les
cases contenant True par le caractère "#" et les cases contenant False par le caractère "-". Voici un
exemple pour P ainsi que l’affichage correspondant :

P = [[True , False, False, True , True , True , True , False],
[False, False, True , False, False, True ],
[],
[True , False, True , False, True ],
[False, True , True , True ]]

#--####-
--#--#

#-#-#
-###

1



2.a. Conditions (C1), (C2) et (C3)

3. Écrire une fonction test1(P: list[list[bool]]) -> bool qui renvoie True si P vérifie (C1) et
False sinon.

4. (a) Écrire une fonction cptTrue(P: list[list[bool]]) -> int qui renvoie le nombre de cases de
P contenant True.

(b) En déduire une fonction test2(n: int, P: list[list[bool]]) -> bool qui renvoie True si
P vérifie (C2) et False sinon.

5. Dans cette question, on pourra supposer sans le vérifier que P satisfait (C1).
(a) Écrire une fonction :

ligne(P: list[list[bool]], i0: int) -> list[int,int]

qui renvoie la liste de tous les couples (i,j) tels que i0 = i et P[i][j] = True. On pourra
supposer sans le vérifier que i0 est un indice valide pour P.

(b) À l’aide d’une fonction récursive, écrire une fonction :

colonne(P: list[list[bool]], j0: int) -> list[int,int]

qui renvoie la liste de tous les couples (i,j) tels que j0 = j et P[i][j] = True. On pourra
supposer sans le vérifier que j0 est un indice valide pour P.

(c) En déduire une fonction test3(P: list[list[bool]]) -> bool qui renvoie True si P vérifie
(C3) et False sinon.

2.b. Condition (C4)
On souhaite maintenant vérifier la condition (C4). Dans un premier temps, il faut donner une définition
formelle de la “connexité”.

Notation 7. Dans cette partie, la variable P est une liste de type « list[list[bool]] » vérifiant les
conditions (C1) à (C3).

Notation 8. On note I ⊂ N2 l’ensemble des couples (i, j) ∈ N2 tels que P[i][j] existe et vaut True.

Définition 9. Pour tout (i, j) ∈ I, un voisin de (i,j) est un élément de l’ensemble :{
(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)

}
∩ I

En d’autres termes, les 4 voisins possibles pour (i, j) sont les cases directement en dessous, au-dessus, à
droite et à gauche de (i, j).

Définition 10. Soit k ∈ N, u ∈ I et v ∈ I. Un chemin de longueur k entre u et v est un (k+1)-uplet
(w0, w1, . . . wk) ∈ Ik+1 tel que :

w0 = u, wk = v, ∀i ∈ J 0 ; k − 1 K : wi+1 est un voisin de wi.

Définition 11. P est dit connexe si pour tout u ∈ I et tout v ∈ I, il existe un chemin entre u et v.

Définition 12. Soient u ∈ I et v ∈ I tels qu’il existe un chemin entre u et v. La distance entre u et v est
le plus petit entier k ∈ N tel qu’il existe un chemin de longueur k entre u et v.

Exemple 13. On s’intéresse aux deux 7-ominos de la figure 6. Pour le polyomino de gauche on pose
u0 = (0, 0) et pour le polyomino de droite on pose u0 = (1, 0). Lorsqu’on calcule les distances entre u0 et
tous les v ∈ I, on obtient les valeurs de la figure 9.

6. Recopier la figure 7 et y inscrire les distances entre u0 = (0, 0) et tous les v ∈ I.

2



Notre objectif est maintenant de vérifier si P est connexe. Pour cela, on fixe arbitrairement u0 ∈ I, puis on
explore de proche en proche toutes les cases accessibles. Plus précisément, nous allons utiliser deux variables :

→ Une variable « vu: dict[(int, int): NoneType] » contenant un dictionnaire dont les clés sont tous
les couples (i,j) tels que (i,j) est une case ayant déjà été explorée. Les valeurs du dictionnaire
seront toutes égales à None car nous ne les utiliserons pas.

→ Une variable « dist: list[list[(int,int)]] » telle que dist[d] est la liste de tous les v ∈ I tels
que u0 et v sont à distance d.

L’algorithme que nous utiliserons s’appelle un parcours en largeur. En voici le principe :
⋆ Initialement, on pose dist = [[u]].
⋆ À chaque étape :

- On parcourt tous les couples (i,j) dans dist[-1] et on note L la liste de toutes les cases voisines
des (i,j) n’ayant pas encore été explorées.

- On ajoute L dans dist.
⋆ La procédure s’arrête lorsque dist[-1] est vide. Pour tester si P est connexe, il suffit alors de vérifier

si le nombre de cases explorées est égal au nombre d’éléments dans I.

Exemple 14. On s’intéresse aux deux 7-ominos de la figure 6. Pour le polyomino de gauche on pose
u0 = (0, 0) et pour le polyomino de droite on pose u0 = (1, 0). Voici la liste dist obtenue à la fin du
parcours en largeur :

dist1_fig6 = [[(0, 0)],
[(1, 0), (0, 1)],
[(2, 0), (0, 2)],
[(1, 2)],
[(2, 2)],
[]]

dist2_fig6 = [[(1, 0)],
[(2, 0), (1, 1)],
[(0, 1), (1, 2)],
[(0, 2)],
[(0, 3)],
[]]

7. Donner la liste dist obtenue à la fin du parcours en largeur appliqué au 12-omino de la figure 7 avec
u0 = (0, 0).

8. (a) Écrire une fonction dansI(P: list[list[bool]], i: int, j: int) -> bool qui indique si
(i, j) ∈ I. En particulier, si i et j ne sont pas des indices valides pour P, la fonction doit renvoyer
False.

(b) Écrire une fonction

parcLarg(P: list[list[bool]], i0: int, j0: int) ->
(dict[(int, int): NoneType], list[list[(int,int)]])

qui applique le parcours en largeur sur P à partir de la case u0 = (i0, j0). Bien sûr, vous devez
utiliser la procédure décrite ci-dessus. Les objets en sortie sont le dictionnaire « vu » et la liste
« dist ». On pourra supposer sans le vérifier que (i0, j0) ∈ I.

(c) En déduire une fonction test4(P: list[list[bool]]) -> bool qui renvoie True si P vérifie
(C4) et False sinon.

3. Katamino
Le “Katamino” est un jeu de société où le joueur dispose d’un ensemble de polyominos et doit les utiliser

pour paver un rectangle sans chevauchement. Par exemple la figure 10 montre comment paver un rectangle
composé de 5 lignes et 9 colonnes en utilisant les 5-ominos de la figure 11. L’objectif de cette partie est
d’écrire un programme Python pour résoudre ce problème.

Notation 15. Dans cette partie, le type « Polyo1 » désigne l’ensemble des listes « P: list[list[bool]] »
vérifiant les conditions (C1), (C2), (C3) et (C4).

9. À l’aide d’une compréhension de liste, écrire une fonction convertir(P: Polyo1) -> list[int,int]
qui renvoie la liste de tous les couples (i,j) tels que P[i][j] = True. Votre fonction doit être com-
posée d’exactement deux lignes : une avec le « def » et une avec le « return ».

3



Notation 16. Dans la suite, on dira qu’une liste Q est de type « Polyo2 » s’il existe « P: Polyo1 » telle
que Q = convertir(P).

3.a. Rotations et symétries

Lors d’une partie de Katamino, le joueur peut faire pivoter les pièces et les retourner.

Notation 17. Soit P un polyomino. On note T (P ) l’ensemble des polyominos que peut obtenir le joueur
en appliquant sur P des combinaisons :

→ De rotations de 90° dans le sens des aiguilles d’une montre.
→ De symétries par rapport à un axe vertical.

10. Dessiner tous les éléments de T (P ) lorsque P est le polyomino de la figure 5.
11. Écrire une fonction egal(P1: Polyo1, P2: Polyo1) -> bool qui indique si P1 et P2 correspondent

au même polyomino. En d’autres termes, votre fonction doit renvoyer le booléen « P1 == P2 ». Les
opérateurs de comparaison (==, !=, . . .) peuvent être utilisés uniquement avec des objets de type int
ou bool ; en particulier, écrire « L1 == L2 » est interdit lorsque L1 et L2 sont des listes.

12. Écrire une fonction sym(P: Polyo1) -> Polyo1 qui renvoie le polyomino obtenu en appliquant une
symétrie sur P par rapport à un axe vertical.

13. Écrire une fonction rot(P: Polyo1) -> Polyo1 qui renvoie le polyomino obtenu en appliquant une
rotation de 90° dans le sens des aiguilles d’une montre sur P.

14. Déduire des questions précédentes une fonction : makeT(P: Polyo1) -> list[Polyo1]) qui prend
en entrée un polyomino P et renvoie T (P ). La liste obtenue ne doit pas contenir de doublon.

3.b. Recherche d’une solution du Katamino

Pour rechercher une solution au jeu du Katamino, on va adopter une approche récursive. L’idée est de
partir de la grille vide notée G et d’y placer les polyominos les uns après les autres. Pour chaque polyomino
P , on essaye successivement toutes les positions de P dans G. Lorsqu’une position valide est détectée, on y
met P , puis on place récursivement les polyominos restants.

Notation 18. On note « P_list: list[Polyo1] » la liste des polyominos que doit placer le joueur (aucune
rotation/symétrie n’a encore été appliquée sur les éléments de P_list).

Notation 19. Dans la suite, le type « Grille » sera une abréviation pour « list[list[int]] ». De plus,
pour tout objet G de type Grille :

→ Lorsque la case (i,j) est libre, on a G[i][j] = -1.
→ Lorsque le polyomino P_list[m] occupe la case (i,j), on a G[i][j] = m. Notez qu’un po-

lyomino P occupe cptTrue(P) cases.

15. Soit P = P_list[m] un polyomino et Q = convertir(P). Écrire une fonction

placer(G: Grille, Q: Polyo2, m: int, i: int, j: int) -> Grille ou NoneType

qui essaye de placer P dans G en faisant correspondre P[0][0] avec G[i][j]. Si P chevauche un autre
polyomino, la fonction doit renvoyer None ; sinon elle doit renvoyer une copie de G dans laquelle les
cases occupées par P sont remplacées par m.

16. Écrire une fonction récursive

katamino(m1: int, m2: int, P_list: list[Polyo1]) -> Grille

qui renvoie une solution au jeu du Katamino. L’entier m1 (resp. m2) est le nombre de lignes (resp.
colonnes) dans la grille.

4. Dénombrement des polyominos
Soit n ∈ N∗ un entier fixé. Dans cette partie, on va voir deux méthodes différentes pour compter le nombre
de n-ominos.

4



4.a. Méthode 1

Notation 20. Pour tout n ∈ N∗ et m ∈ N∗, on note En,m l’ensemble des listes « L: list[int] » telles
que :

→ L est de taille m.
→ Tous les éléments de L appartiennent à J 0 ; n2 − 1 K.
→ L[0] appartient à J 0 ; n − 1 K.
→ L est triée.

Exemple 21. Avec n = m = 2 :

E2,2 =
{

[0,1], [0,2], [0,3], [1,2], [1,3]
}

Exemple 22. Avec n = 3 et m = 2 :

E3,2 =
{

[0,1], [0,2], [0,3], [0,4], [0,5], [0,6], [0,7], [0,8],

[1,2], [1,3], [1,4], [1,5], [1,6], [1,7], [1,8],

[2,3], [2,4], [2,5], [2,6], [2,7], [2,8]
}

17. Écrire une fonction makeE(n: int, m: int) -> list[list[int]] qui prend en entrée n ∈ N∗ et
m ∈ N∗, et renvoie une liste contenant tous les éléments de En,m.
Indication : on pourra construire successivement les ensembles En,1, En,2, En,3, . . ., En,m.

Notation 23. Soit n ∈ N∗. On s’intéresse à une grille composée de n lignes et n colonnes dont les cases
sont numérotées de 0 à n2 − 1 (comme dans la figure 12 où n = 5). Pour tout L ∈ En,n, on note α(L) la
grille où les cases numérotées par un élément de L sont marquées par une étoile.

Exemple 24. La figure 13 représente α([1,7,9,16,23])

Exemple 25. La figure 14 représente α([2,10,12,15,22])

Exemple 26. La figure 15 représente α([0,5,6,7,10])

18. (a) Soit n ∈ N∗. En utilisant les notations introduites dans cette partie, expliquer comment générer
tous les n-ominos.

(b) En déduire une fonction cptOminos(n: int) -> int qui prend en entrée un entier n ∈ N∗ et
renvoie le nombre de n-ominos.

4.b. Méthode 2

La deuxième méthode pour générer les n-ominos s’appelle la méthode par croissance. En voici le principe :
→ On part d’une grille contenant n lignes et n colonnes dans laquelle on va sélectionner des cases. Les

cases sélectionnées formeront un ensemble connexe et représenteront donc un n-omino.
→ À chaque instant, chaque case c est dans l’état 0, 1 ou 2 :

- L’état 2 signifie que c a déjà été sélectionnée.
- L’état 1 signifie que c n’a pas encore été sélectionnée, mais qu’elle pourra l’être lors de la prochaine

étape.
- L’état 0 signifie que c n’a pas été sélectionnée et qu’elle ne le sera pas lors de la prochaine étape.

→ Initialement, l’une des cases est dans l’état 1 et toutes les autres sont dans l’état 0. Ensuite, à chaque
étape, on choisit une case c parmi celles dans l’état 1. La case c passe dans l’état 2 et tous ses voisins (au
sens de la définition 9) qui sont dans l’état 0 passent dans l’état 1. Lorsque n cases sont sélectionnées,
on obtient un n-omino.

→ Pour garantir que chaque n-omino n’est généré qu’une seule fois :
- La première case sélectionnée c0 doit être sur la première ligne de la grille. Par la suite, aucune

case de la première ligne située à gauche de c0 ne peut être sélectionnée.

5



- On fait en sorte qu’au moins une case de la première colonne soit sélectionnée. Pour cela, on
s’interdit de sélectionner une case si cela implique que la première colonne ne pourra pas être
atteinte.

- Lorsqu’une case passe de l’état 0 à l’état 1, on lui attribue un numéro (égal au nombre de cases
dans l’état 1 ou 2). À chaque étape, on s’interdit de sélectionner une case si son numéro est
inférieur à celui de la case sélectionnée lors de l’étape précédente.

19. Écrire une fonction cptOminosBis(n: int) -> int qui prend en entrée un entier n ∈ N∗ et renvoie
le nombre de n-ominos. Bien sûr, vous devez utiliser la méthode par croissance décrite ci-dessus.

Figure 1

Figure 2
Figure 3

Figure 4
Figure 5

Figure 6 Figure 7 Figure 8

021 231 4 110 322 4
Figure 9

Figure 10
Figure 110 1 2 3 45 6 7 8 910 11 12 13 1415 16 17 18 1920 21 22 23 24

Figure 12 Figure 13 Figure 14 Figure 15

6


	Introduction
	Vérification des propriétés (C1) à (C4) 
	Conditions (C1), (C2) et (C3)
	Condition (C4) 

	Katamino
	Rotations et symétries
	Recherche d'une solution du Katamino

	Dénombrement des polyominos
	Méthode 1
	Méthode 2


