DS 3 d’informatique de I’année 2024 /2025 - MPSI - Polyominos

Consignes :

* Les calculatrices sont interdites. Numérotez vos feuilles et faites apparaitre les questions dans 1’ordre
du sujet.

* Si vous repérez une erreur d’énoncé, signalez-le sur votre copie et poursuivez votre composition.

* Les figures se trouvent sur la derniere page de ce document.

1. Introduction

Définition 1 (Informelle). Soit n € N*. Un n-omino est une forme géométrique connexe composée de n
carrés unitaires. Le terme “connexe” signifie que tous les carrés composant la figure sont connectés.

Exemple 2. Il existe un seul 1-omino (figure 1), deux 2-ominos (figure 2) et six 3-ominos (figure 3). La
figure 4 est un 5-omino, la figure 5 est un 12-omino, la figure 6 représente deux 7-ominos et la figure 7 est
un 12-omino. De plus, la forme de la figure 8 n’est pas un 4-omino car elle n’est pas connexe.

Définition 3. Une forme géométrique est un polyomino s’il existe un entier n € N* tel que cette forme
soit un n-omino.

Exemple 4. Les formes des figures 1 a 7 sont des polyominos.
Définition 5. En Python, un n-omino est une liste de listes de booléens « P: list[list[bool]] » vérifiant
les conditions (Cy), (C2), (C3) et (C4) :

(C1) P est non vide et ses sous-listes sont toutes de la méme taille.

(C2) Exactement n cases de P contiennent True, les autres cases contiennent False.

(C3) Au moins une des cases de la premiere ligne de P contient un True. Idem pour la premiére colonne,
derniere ligne et derniére colonne.

(C4) L’ensemble des cases de P contenant True est connexe. Notez que le terme “connexe” sera défini
formellement dans la partie 2.b..

Exemple 6. Les polyominos de la figure 6 sont représentés par :

P1_fig6 = [P2_fig6 = [
[True , True , True], [False , True , True , True],
[True , False, True], [True , True , True , False],
[True , False, True 1] [True , False, False, False]]

1. Donner la représentation Python du 12-omino de la figure 7.

2. Vérification des propriétés (C;) a (Cy)

Le but de cette partie est de tester si une liste « P: list[list[booll] » vérifie les conditions (C1) a (C4).
Ainsi, sauf indication contraire, on ne suppose pas que P satisfait I'une de ces quatre conditions.

L e e e e e e e e e e e o — —

< < \ . .
cases contenant True par le caractere "#" et les cases contenant False par le caractére "-". Voici un
exemple pour P ainsi que 'affichage correspondant :

P = [[True , False, False, True , True , True , True , False], #-;##i#-
[False, False, True , False, False, True],
1,
#-#-#
[True , False, True , False, True], i
[False, True , True , True]]

2.a. Conditions (Cl), (Cy) et (C3)

P vérifie (C2) et False sinon.

Ut

. Dans cette question, on pourra supposer sans le vérifier que P satisfait (Cy).

(a) Ecrire une fonction :

qui renvoie la hste de tous les couples (i,j) tels que i0 = i et P[i][j] = True. On pourra
supposer sans le vérifier que 10 est un indice valide pour P.

(b) A laide d’une fonction récursive, écrire une fonction :

qui renvoie la hste de tous les couples (i,j) tels que jO = j et P[i] [j] = True. On pourra
supposer sans le vérifier que jO est un indice valide pour P.

(C3) et False sinon.

2.b. Condition (C,)

On souhaite maintenant vérifier la condition (C4). Dans un premier temps, il faut donner une définition
formelle de la “connexité”.

Notation 7. Dans cette partie, la variable P est une liste de type « list[list[booll] » wérifiant les
conditions (C1) a (Cs).

Notation 8. On note I C N? ’ensemble des couples (i, j) € N? tels que P[1] [j] existe et vaut True.

Définition 9. Pour tout (i, j) € I, un voisin de (i,j) est un élément de ’ensemble :
{(i+1sj), (1_1;J), (i,j+1), (I,J_i)}nl

En d’autres termes, les 4 voisins possibles pour (i, j) sont les cases directement en dessous, au-dessus, a
droite et & gauche de (i, j).

Définition 10. Soit ke N, ue I et ve I. Un chemin de longueur k entre u et v est un (k+1)-uplet
(Wo, Wi, ...wx) € I¥* tel que :

Wo = U, W =V, Vi€ [[0;k—1] : wis est un voisin de wj .
Définition 11. P est dit connexe si pour tout u € I et tout v € I, il existe un chemin entre u et v.

Définition 12. Soient u € I et v € I tels qu’il existe un chemin entre u et v. La distance entre u et v est
le plus petit entier k € N tel qu’il existe un chemin de longueur k entre u et v.

Exemple 13. On s’intéresse aux deux 7-ominos de la figure 6. Pour le polyomino de gauche on pose
up = (0, 0) et pour le polyomino de droite on pose ug = (1, 0). Lorsqu’on calcule les distances entre ug et
tous les v € I, on obtient les valeurs de la figure 9.

6. Recopier la figure 7 et y inscrire les distances entre ug = (0, 0) et tous les v € I.

Notre objectif est maintenant de vérifier si P est connexe. Pour cela, on fixe arbitrairement ug € I, puis on
explore de proche en proche toutes les cases accessibles. Plus précisément, nous allons utiliser deux variables :

— Une variable « vu: dict[(int, int): NoneType] » contenant un dictionnaire dont les clés sont tous
les couples (i,j) tels que (i,j) est une case ayant déja été explorée. Les valeurs du dictionnaire
seront toutes égales & None car nous ne les utiliserons pas.

— Une variable « dist: list[list[(int,int)]] » telle que dist[d] est la liste de tous les v € I tels
que up et v sont a distance d.

L’algorithme que nous utiliserons s’appelle un parcours en largeur. En voici le principe :
* Initialement, on pose dist = [[ul].
* A chaque étape :
- On parcourt tous les couples (i, j) dans dist[-1] et on note L la liste de toutes les cases voisines
des (i, j) n’ayant pas encore été explorées.
- On ajoute L dans dist.
* La procédure s’arréte lorsque dist [-1] est vide. Pour tester si P est connexe, il suffit alors de vérifier

si le nombre de cases explorées est égal au nombre d’éléments dans I.

Exemple 14. On s’intéresse aux deux 7-ominos de la figure 6. Pour le polyomino de gauche on pose
up = (0, 0) et pour le polyomino de droite on pose ug = (1, 0). Voici la liste dist obtenue a la fin du
parcours en largeur :

distl_figé = [[(0, 0)], dist2_figé = [[(1, 0)],
[(1, 0), (0, DI, [(2, 00, (1, 1],
[(2, 0, (0, 21, [co, 1, 1, 21,
[(1, 21, [0, 2)],
(2, 2)1, [(o, 31,
(11 (11

7. Donner la liste dist obtenue a la fin du parcours en largeur appliqué au 12-omino de la figure 7 avec
Up = (O , O) .

8. (a) Ecrire une fonction 'dansI(P: list[list[booll], i: int, j: int) -> bool qui indique si

False.
(b) Ecrire une fonction

parcLarg(P: list[list[bool]], iO: int, jO: int) -> !
(dict[(int, int): NoneTypel, list[list[(int,int)]]) |

qui applique le parcours en largeur sur P a partir de la case up = (10, jO). Bien sfir, vous devez
utiliser la procédure décrite ci-dessus. Les objets en sortie sont le dictionnaire « vu » et la liste
« dist ». On pourra supposer sans le vérifier que (10, jO) € I.

(C4) et False sinon.

3. Katamino

Le “Katamino” est un jeu de société ou le joueur dispose d’un ensemble de polyominos et doit les utiliser
pour paver un rectangle sans chevauchement. Par exemple la figure 10 montre comment paver un rectangle
composé de 5 lignes et 9 colonnes en utilisant les 5-ominos de la figure 11. L’objectif de cette partie est
d’écrire un programme Python pour résoudre ce probleme.

Notation 15. Dans cette partie, le type « Polyol » désigne l’ensemble des listes « P: 1list[list[booll] »
vérifiant les conditions (C1), (C2), (C3) et (Cyq).

posée d’exactement deux lignes : une avec le « def » et une avec le « return ».

Notation 16. Dans la suite, on dira qu’une liste Q est de type « Polyo2 » s’il existe « P: Polyol » telle
que @ = convertir(P).

3.a. Rotations et symétries
Lors d’une partie de Katamino, le joueur peut faire pivoter les pieces et les retourner.
Notation 17. Soit P un polyomino. On note T'(P) l’ensemble des polyominos que peut obtenir le joueur
en appliquant sur P des combinaisons :
— De rotations de 90° dans le sens des atguilles d’une montre.

— De symétries par rapport a un azre vertical.

10. Dessiner tous les éléments de T'(P) lorsque P est le polyomino de la figure 5.

11. Ecrire une fonction egal (P1: Polyol, P2: Polyol) -> bool rqui indique si P1 et P2 correspondent

au meme polyomlno En d’autres termes, votre fonction doit renvoyer le booléen « P1 == P2 ». Les
opérateurs de comparaison (==, !=, ...) peuvent étre utilisés uniquement avec des obJetS de type int
ou bool; en particulier écrire « L1 == L2 » est interdit lorsque L1 et L2 sont des listes.

12. Ecrlre une fonction sym(P Polyol) -> Polyol qui renvoie le polyomino obtenu en appliquant une
L

13. Ecrlre une fonction rot (P Polyol) -> Polyol qui renvoie le polyomino obtenu en appliquant une

14. Déduire des questions précédentes une fonction : wmakeT(P Polyol) -> list[Polyo 1]) rqui prend

en entrée un polyomino P et renvoie T'(P). La hste obtenue ne doit pas contenir de doublon

3.b. Recherche d’une solution du Katamino

Pour rechercher une solution au jeu du Katamino, on va adopter une approche récursive. L’idée est de
partir de la grille vide notée G et d’y placer les polyominos les uns apres les autres. Pour chaque polyomino
P, on essaye successivement toutes les positions de P dans G. Lorsqu’une position valide est détectée, on y
met P, puis on place récursivement les polyominos restants.

Notation 18. On note « P_list: list[Polyoll » la liste des polyominos que doit placer le joueur (aucune
rotation/symétrie n’a encore été appliquée sur les éléments de P_list).

Notation 19. Dans la suite, le type « Grille » sera une abréviation pour « list[list[int]] ». De plus,
pour tout objet G de type Grille :

— Lorsque la case (1,j) est libre, on a G[1][j] = -1.

— Lorsque le polyomino P_list[m] occupe la case (i,3), on a G[i] [j1 = m. Notez qu’un po-

lyomino P occupe cptTrue(P) cases.

15. Soit P = P_list[m] un polyomino et Q = convertir(P). Ecrire une fonction

qui essaye de placer P dans G en faisant correspondre P[0] [0] avec G[1i] [j]. Si P chevauche un autre
polyomino, la fonction doit renvoyer None ; sinon elle doit renvoyer une copie de G dans laquelle les
cases occupées par P sont remplacées par m.

16. Ecrire une fonction récursive

qui renvoie une solution au jeu du Katamino. L’entier m1 (resp. m2) est le nombre de lignes (resp.
colonnes) dans la grille.

4. Dénombrement des polyominos

Soit n € N* un entier fixé. Dans cette partie, on va voir deux méthodes différentes pour compter le nombre
de n-ominos.

4.a. Meéthode 1
Notation 20. Pour tout n € N* et m € N*, on note E,, ,, l'ensemble des listes « L: list[int] » telles
que :

— L est de taille m.

— Tous les éléments de L appartiennent a [0;n% —1].

— L[0] appartient a [0;n —1].

— L est triée.

Exemple 21. Avecn=m =2:
By ={[0,1], [0,2], [0,3], [1,2], [1,3]}
Exemple 22. Avecn=3et m=2:

By, ={[0,1], [0,2], [0,3], [0,4], [0,5], [0,6], [0,7], [0,8],
(1,21, [1,3], [1,4], [1,5], [1,6], [1,7], [1,8],
(2,31, [2,4], [2,5], [2,6], [2,7], [2,8]}

m € N*, et renvoie une liste contenant tous les éléments de E,, ,,.
Indication : on pourra construire successivement les ensembles Ey, 1, E, 2, Epn3, ..., Enm;.

Notation 23. Soit n € N*. On s’intéresse a une grille composée de n lignes et n colonnes dont les cases
sont numérotées de 0 @ n® — 1 (comme dans la figure 12 otu n = 5). Pour tout L € Ey,, on note a(L) la
grille ou les cases numérotées par un élément de L sont marquées par une étoile.

Exemple 24. La figure 13 représente «([1,7,9,16,23])
Exemple 25. La figure 14 représente a([2,10,12,15,22])
Exemple 26. La figure 15 représente «([0,5,6,7,10])

18. (a) Soit n € N*. En utilisant les notations introduites dans cette partie, expliquer comment générer
tous les n-ominos.

r il
(b) En déduire une fonction ' cptOminos(n: int) -> int: qui prend en entrée un entier n € N* et

O .}
renvoie le nombre de n-ominos.

4.b. Méthode 2

La deuxieme méthode pour générer les n-ominos s’appelle la méthode par croissance. En voici le principe :

— On part d’une grille contenant n lignes et n colonnes dans laquelle on va sélectionner des cases. Les
cases sélectionnées formeront un ensemble connexe et représenteront donc un n-omino.

— A chaque instant, chaque case ¢ est dans I’état 0, 1 ou 2 :
- L’état 2 signifie que ¢ a déja été sélectionnée.
- L’état 1 signifie que ¢ n’a pas encore été sélectionnée, mais qu’elle pourra 1’étre lors de la prochaine
étape.
- L’état 0 signifie que ¢ n’a pas été sélectionnée et qu’elle ne le sera pas lors de la prochaine étape.
— Initialement, I'une des cases est dans ’état 1 et toutes les autres sont dans I’état 0. Ensuite, a chaque
étape, on choisit une case ¢ parmi celles dans I’état 1. La case ¢ passe dans ’état 2 et tous ses voisins (au
sens de la définition 9) qui sont dans ’état 0 passent dans I’état 1. Lorsque n cases sont sélectionnées,
on obtient un n-omino.
— Pour garantir que chaque n-omino n’est généré qu’une seule fois :

- La premiere case sélectionnée cqg doit étre sur la premiere ligne de la grille. Par la suite, aucune
case de la premiere ligne située a gauche de ¢y ne peut étre sélectionnée.

- On fait en sorte qu’au moins une case de la premiere colonne soit sélectionnée. Pour cela, on
s'interdit de sélectionner une case si cela implique que la premiére colonne ne pourra pas étre
atteinte.

- Lorsqu’une case passe de ’état 0 a I’état 1, on lui attribue un numéro (égal au nombre de cases
dans état 1 ou 2). A chaque étape, on s’interdit de sélectionner une case si son numéro est
inférieur & celui de la case sélectionnée lors de I’étape précédente.

[|

L] L]
L]] [|
FI1GURE 1 H o ‘ m —
L[]

FIGURE 4
FIGURE 2 — L
FIGURE 5
FIGURE 3
\ 0l1]2 2 4
1 3 0
J 2 4 1
FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9
FIGURE 10
FIGURE 11
0/1/2/3|4 * * *
6| 7|181]9 * * * % |k
10(11]12(13(14 * * *
15|116(17|181(19 * *
20121(22(23|24 * *
FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15

	Introduction
	Vérification des propriétés (C1) à (C4)
	Conditions (C1), (C2) et (C3)
	Condition (C4)

	Katamino
	Rotations et symétries
	Recherche d'une solution du Katamino

	Dénombrement des polyominos
	Méthode 1
	Méthode 2

