
DS 3 d’informatique de l’année 2024/2025 - MPSI - Correction

Question 1 – On obtient :
P_fig7 = [[True , True , False, False, True , True],

[True , True , True , True , True , True],
[False, True , False, False, True , False]]

Question 2 –
def afficher(P):

for i in range(len(P)):
s = ""
for j in range(len(P[i])):

i f P[i][j]:
s = s + "#"

else:
s = s + "-"

print(s)

Question 3 –
def test1(P):

i f len(P) == 0:
return False

n1 = len(P[0])
for i in range(len(P)):

i f len(P[i]) != n1:
return False

return True

Question 4.a –
def cptTrue(P):

cpt = 0
for i in range(len(P)):

for j in range(len(P[i])):
i f P[i][j]:

cpt += 1
return cpt

Question 4.b –
def test2(P, n):

return cptTrue(P) == n

Question 5.a –
def ligne(P, i0):

L = []
for j in range(len(P[i0])):

i f P[i0][j]:
L.append((i0,j))

return L

1

Question 5.b – On applique la méthode vue en cours permettant de transformer une fonction itérative en
fonction récursive.

Suppose que test1(P) vaut True
def colonne_aux(P, j0, L, i):

i f i >= len(P):
return L

i f P[i][j0]:
L.append((i,j0))

return colonne_aux(P, j0, L, i+1)

def colonne(P, j0):
return colonne_aux(P, j0, [], 0)

Question 5.c –
Suppose que test1(P) vaut True
def test3(P):

i f len(ligne(P, 0)) == 0 or len(ligne(P, len(P)-1)) == 0:
return False

i f len(colonne(P, 0)) == 0 or len(colonne(P, len(P[0])-1)) == 0:
return False

return True

Question 6 – On obtient : 0 31 12 3 4 656 67
Question 7 – On obtient :

dist_fig5 = [[(0, 0)],
[(1, 0), (0, 1)],
[(1, 1)],
[(2, 1), (1, 2)],
[(1, 3)],
[(1, 4)],
[(2, 4), (0, 4), (1, 5)],
[(0, 5)],
[]]

Question 8.a –
def dansI(P, i, j):

i f i < 0 or i >= len(P):
return False

i f j < 0 or j >= len(P[0]):
return False

i f not P[i][j]:
return False

return True

2

Question 8.b –
def parcLarg(P, i0, j0):

vu = {(i0,j0): None}
dist = [[(i0,j0)]]
while len(dist[-1]) > 0:

dist.append([])
for (i1,j1) in dist[-2]:

for (i2,j2) in [(i1+1,j1), (i1-1,j1), (i1,j1+1), (i1,j1-1)]:
i f dansI(P, i2, j2) and not (i2,j2) in vu:

vu[(i2,j2)] = None
dist[-1].append((i2,j2))

return vu, dist

Question 8.c –
Remarque: la liste C est non vide car P vérifie (C1) et (C3)
def test4(P):

C = colonne(P, 0)
(i0,j0) = C[0]
vu, _ = parcLarg(P, i0, j0)
return len(vu) == cptTrue(P)

Question 9 –
def convertir(P):

return [(i,j) for i in range(len(P)) for j in range(len(P[i])) i f P[i][j]]

Question 10 – On obtient 8 polyominos :

Question 11 –
def egal(P1, P2):

i f len(P1) != len(P2):
return False

i f len(P1[0]) != len(P2[0]):
return False

for i in range(len(P1)):
for j in range(len(P1[i])):

i f P1[i][j] != P2[i][j]:
return False

return True

3

Question 12 –
def sym(P):

m1 = len(P)
m2 = len(P[0])
Q = [[None for _ in range(m2)] for _ in range(m1)]
for i in range(m1):

for j in range(m2):
Q[i][m2-j-1] = P[i][j]

return Q

Question 13 –
def rot(P):

m1 = len(P)
m2 = len(P[0])
Q = [[None for _ in range(m1)] for _ in range(m2)]
for i in range(m1):

for j in range(m2):
Q[j][m1-i-1] = P[i][j]

return Q

Question 14 –
def appartient(P, L):

for Q in L:
i f egal(P, Q):

return True
return False

def makeT(P):
R = [P]
S = [sym(P)]
for _ in range(3):

R.append(rot(R[-1]))
S.append(rot(S[-1]))

T = []
for P in R + S:

i f not appartient(P, T):
T.append(P)

return T

Question 15 –
Indique si la position (i,j) est libre dans G
def estLibre(i,j,G):

m1 = len(G)
m2 = len(G[0])
i f i < 0 or i >= m1:

return False
i f j < 0 or j >= m2:

return False
i f G[i][j] != -1:

return False
return True

4

def placer(G, Q, m, i, j):
G1 = [[e for e in g] for g in G]
for (i1,j1) in Q:

i2 = i + i1
j2 = j + j1
i f estLibre(i2,j2,G1):

G1[i2][j2] = m
else:

return None
return G1

Question 16 –
Renvoie la somme des tailles des polyominos
def sommeTailles(P_list):

s = 0
for P in P_list:

s += cptTrue(P)
return s

def katamino_aux(G1, TQ_list, m):
i f m == len(TQ_list):

return G1
m1 = len(G1)
m2 = len(G1[0])
for Q in TQ_list[m]:

for i in range(m1):
for j in range(m2):

G2 = placer(G1, Q, m, i, j)
i f G2 is not None:

G3 = katamino_aux(G2, TQ_list, m+1)
i f G3 is not None:

return G3
return None

Renvoie None si pas de solution
def katamino(m1, m2, P_list):

i f sommeTailles(P_list) != m1 * m2:
return None

G = [[-1 for j in range(m2)] for i in range(m1)]
TP_list = [makeT(P) for P in P_list]
TQ_list = [[convertir(P) for P in L] for L in TP_list]
return katamino_aux(G, TQ_list, 0)

Question 17 –
Hypothèse: m > 0
def makeE(n, m):

E1 = [[i] for i in range(n)]
for _ in range(m-1):

E2 = []
for R in E1:

for i in range(R[-1]+1, n*n):
E2.append(R + [i])

E1 = E2
return E1

5

Question 18.a – Pour générer tous les n-ominos :
→ On génère toutes les listes L ∈ En,n avec la fonction de la question précédente.
→ On construit GL la grille obtenue à partir de α(L) en supprimant les dernières lignes et les dernières co-

lonnes ne contenant pas d’étoile. Par exemple les grilles associées à [1,7,9,16,23], [2,10,12,15,22],
[0,5,6,7,10] sont respectivement :

La grille GL est représentée par une variable « P: list[list[bool]] » où les étoiles correspondent
aux cases contenant True.

→ On conserve uniquement les listes P qui sont des n-omnios.

Question 18.b – L’entier n1 (resp. n2) est le nombre de lignes (resp. colonnes) dans la grille après avoir
supprimé les dernières colonnes (resp. lignes) ne contenant pas d’étoile.

Suppose L non vide
def find_n1(L):

return L[-1]//len(L) + 1

def find_n2(L):
n = len(L)
n2 = 0
for k in L:

j = k % n
i f j >= n2:

n2 = j
return n2 + 1

def L_to_P(L):
n = len(L)
n1 = find_n1(L)
n2 = find_n2(L)
P = [[False for j in range(n2)] for i in range(n1)]
for k in L:

P[k // n][k % n] = True
return P

def cptOminos(n):
cpt = 0
E = makeE(n,n)
for L in E:

P = L_to_P(L)
i f test1(P) and test2(P, n) and test3(P) and test4(P):

cpt += 1
return cpt

6

Question 19 –
def dansGrille(i,j,n):

i f i < 0 or i >= n:
return False

i f j < 0 or j >= n:
return False

return True

Cette fonction indique si sélectionner la case (i,j) est autorisé.
n est la taille de la grille.
m est le numéro de l'étape.
j0 est tel que (0,j0) est la case sélectionnée par l'algorithme lors de la
première étape.
jmin est la plus petite colonne sur laquelle au moins une case est
sélectionnée.
def choixPossible(i,j,n,m,j0,jmin):

i f i == 0 and j < j0:
return False

i f jmin >= n-m and j >= n-m:
return False

return True

etat[i][j] \in {0,1,2} indique l'état de la case (i,j).
L est la liste des cases dans l'état 1 dont le numéro est supérieur au numéro
de la dernière case sélectionnée.
def generer(etat, m, L, j0, jmin):

n = len(etat)
i f n == m:

return 1
res = 0
for k in range(len(L)):

(i1,j1) = L[k]
i f choixPossible(i1,j1,n,m,j0,jmin):

L1 = L[k+1:]
L2 = [(i1+1,j1), (i1-1,j1), (i1,j1+1), (i1,j1-1)]
L2 = [(i2,j2) for (i2,j2) in L2

i f dansGrille(i2,j2,n) and etat[i2][j2] == 0]
etat[i1][j1] = 2
for (i2,j2) in L2:

etat[i2][j2] = 1
res += generer(etat, m+1, L1 + L2, j0, min(jmin, j1))
for (i2,j2) in L2:

etat[i2][j2] = 0
etat[i1][j1] = 1

return res

def cptOminosBis(n):
etat = [[0 for j in range(n)] for j in range(n)]
res = 0
for j in range(n):

etat[0][j] = 1
res += generer(etat, 0, [(0,j)], j, j)
etat[0][j] = 0

return res

7

