DS 3 d’informatique de ’année 2024/2025 - MPSI - Correction

Question 1 — On obtient :

P_fig7 = [[True , True , False, False, True , True],
[True , True , True , True , True , True],
[False, True , False, False, True , False]l]

Question 2 —

def afficher(P):
for i in range(len(P)):
s = nn
for j in range(len(P[i])):
if P[i][51:
s =s + "#"
else:
s =8+ "-"

print (s)

Question 3 —

def test1(P):

if len(P) == 0:
return False

nl = len(P[0])

for i in range(len(P)):
if len(P[i]) != nil:

return False
return True

Question 4.a —

def cptTrue(P):
cpt = 0
for i in range(len(P)):
for j in range(len(P[i])):
if PLi][j1:
cpt += 1

return cpt

Question 4.b —

def test2(P, n):
return cptTrue(P) == n

Question 5.a —

def ligne(P, i0):
L=1[]
for j in range(len(P[i0])):
if P[i0][j]:
L.append ((i0,j))
return L

Question 5.b — On applique la méthode vue en cours permettant de transformer une fonction itérative en
fonction récursive.

Suppose que testl(P) vaut True
def colonne_aux(P, jO, L, i):
if 1 >= len(P):
return L
if P[i][j0]:
L.append((i,j0))
return colonne_aux(P, jO, L, i+l)

def colonne(P, jO):
return colonne_aux(P, jO, [1, 0)

Question 5.c —

Suppose que testl(P) vaut True
def test3(P):
if len(ligne(P, 0)) == 0 or len(ligne(P, len(P)-1)) == 0:
return False
if len(colonne(P, 0)) == 0 or len(colonne(P, len(P[0])-1)) == O:
return False
return True

Question 6 — On obtient :

’OO[\DH
W
S~

’CDU!CD

Question 7 — On obtient :

dist_figs = [[(0, 0)],
(1, o, 0, 1I,
(1, I,
[, v, @, 21,
(1, 3)1,
[1, a1,
[(2, 4, 0, 4, (1, 51,
[(o, 51,
(1]

Question 8.a —

def dansI(P, i, j):

if i <0 or i >= len(P):
return False

if j <0 or j >= len(P[0]):
return False

if not P[i][j]:
return False

return True

Question 8.b —

def parcLarg(P, i0, jO):
vu = {(i0,j0): None}
dist = [[(i0,j0)]1]
while len(dist[-1]) > O:
dist.append([])
for (i1,j1) in dist[-2]:
for (i2,j2) in [(i1+1,j1), (i1-1,j1), (i1,j1+1), (i1,j1-1)]:
if dansI(P, i2, j2) and not (i2,j2) in vu:
vu[(i2,j2)] = None
dist[-1] .append((i2,j2))
return vu, dist

Question 8.c —

Remarque: la liste C est non vide car P vérifie (Cl) et (C3)
def test4(P):

C = colonne(P, 0)

(10,30) = c[0]

vu, _ = parclLarg(P, i0O, jO)

return len(vu) == cptTrue(P)

Question 9 —

def convertir(P):
return [(i,j) for i in range(len(P)) for j in range(len(P[i])) if P[i][j]1]

Question 10 — On obtient 8 polyominos :

L]]

Question 11 —

def egal(P1, P2):
if len(P1) '= len(P2):
return False
if len(P1[0]) !'= len(P2[0]):
return False
for i in range(len(P1)):
for j in range(len(P1[i])):
if P1[i]1[3] '= P2[i][j]:
return False
return True

Question 12 —

def sym(P):
ml = len(P)
m2 = len(P[0])
Q = [[None for _ in range(m2)] for _ in range(m1)]
for i in range(mi):
for j in range(m2):
Qli] [m2-j-1]1 = P[i][j]

return Q

Question 13 —

def rot(P):
ml = len(P)
m2 = len(P[0])

Q = [[None for _ in range(ml)] for _ in range(m2)]
for i in range(mi):
for j in range(m2):

Q[j1[m1-i-11 = P[i][j]

return Q

Question 14 —

def appartient(P, L):
for Q in L:
if egal(P, Q:
return True
return False

def makeT(P):
R = [P]
S = [sym(P)]
for _ in range(3):
R.append(rot (R[-1]))
S.append (rot(S[-11))
T=1]
for P in R + S:
if not appartient(P, T):
T.append (P)
return T

Question 15 —

Indique si la position (i,j) est libre dans G
def estLibre(i,j,Gq):
ml = len(G)
m2 = len(G[0])
if i <0 or i >= mi:
return False
if j <0 or j >= m2:
return False
if G[il[j] '= -1:
return False
return True

def placer(G, Q, m, i, j):
Gl = [[e for e in g] for g in G]
for (i1,j1) in Q:
i2 =i+ i1l
j2 = 3 + j1
if estLibre(i2,j2,G1):
G1[i2] [j2] = m
else:
return None
return G1

Question 16 —

Renvoie la somme des tailles des polyominos
def sommeTailles(P_list):
s =0
for P in P_list:
s += cptTrue(P)
return s

def katamino_aux(G1l, TQ_list, m):
if m == len(TQ_list):
return G1
ml = len(G1)
m2 = len(G1[0])
for Q in TQ list[m]:
for i in range(mi):
for j in range(m2):
G2 = placer(G1l, Q, m, i, j)
if G2 is not None:
G3 = katamino_aux (G2, TQ_list, m+1)
if G3 is not None:
return G3
return None

Renvoie None si pas de solution
def katamino(ml, m2, P_list):
if sommeTailles(P_list) != ml * m2:
return None
G = [[-1 for j in range(m2)] for i in range(m1)]
TP_list = [makeT(P) for P in P_list]
TQ_list = [[convertir(P) for P in L] for L in TP_list]
return katamino_aux(G, TQ list, 0)

Question 17 —

Hypothése: m > O
def makeE(n, m):
El1 = [[i] for i in range(n)]
for _ in range(m-1):
E2 = []
for R in E1:
for i in range(R[-1]+1, n*n):
E2.append(R + [i])
El1 = E2
return E1

Question 18.a — Pour générer tous les n-ominos :
— On génere toutes les listes L € F, ,, avec la fonction de la question précédente.

— On construit G, la grille obtenue & partir de a(L) en supprimant les dernieéres lignes et les derniéres co-
lonnes ne contenant pas d’étoile. Par exemple les grilles associées a [1,7,9,16,23], [2,10,12,15,22],
[0,5,6,7,10] sont respectivement :

* *
* * *
* * * | % |k
* * *
* *

La grille G, est représentée par une variable « P: list[list[bool]] » ou les étoiles correspondent
aux cases contenant True.

— On conserve uniquement les listes P qui sont des n-omnios.

Question 18.b — L’entier n1 (resp. n2) est le nombre de lignes (resp. colonnes) dans la grille apreés avoir
supprimé les derniéres colonnes (resp. lignes) ne contenant pas d’étoile.

Suppose L non vide
def find ni1(L):
return L[-1]//len(L) + 1

def find_n2(L):

n = len(L)
n2 =0
for k in L:
j=k%n
if j >= n2:
n2 = j

return n2 + 1

def L_to_P(L):
n = len(L)
nl = find_ni(L)
n2 = find_n2(L)
P = [[False for j in range(n2)] for i in range(nl)]
for k in L:
P[k // nllk % n] = True
return P

def cptOminos(n):
cpt = 0
E = makeE(n,n)
for L in E:
P = L_to P(L)
if testl1(P) and test2(P, n) and test3(P) and test4(P):
cpt +=1
return cpt

Question 19 —

def dansGrille(i,j,n):
if i < 0 or i >= n:
return False
if j <0 or j >= n:
return False
return True

Cette fonction indique si sélectionner la case (i,j) est autorisé.
n est la taille de la grille.
m est le numéro de 1'étape.
jO est tel que (0,jO) est la case sélectionnée par 1l'algorithme lors de la
premiére étape.
jmin est la plus petite colonne sur laquelle au moins une case est
sélectionnée.
def choixPossible(i,j,n,m,jO,jmin):
if i == 0 and j < jO:
return False
if jmin >= n-m and j >= n-m:
return False
return True

H OH HF H OH H R

etat[i][j] \in {0,1,2} indique 1'état de la case (i,j).
L est la liste des cases dans 1'état 1 dont le numéro est supérieur au numéro
de la derniére case sélectionnée.
def generer(etat, m, L, jO, jmin):
n = len(etat)
if n ==
return 1
res =0
for k in range(len(L)):
(i1,j1) = L[k]
if choixPossible(il,jl,n,m,jO,jmin):
L1 = L[k+1:]
L2 [(i1+1,31), (i1-1,j1), (i1,ji1+1), (i1,j1-1)]
L2 = [(i2,j2) for (i2,j2) in L2
if dansGrille(i2,j2,n) and etat[i2] [j2] == 0]
etat[i1][j1] = 2
for (i2,j2) in L2:
etat[i2] [j2] = 1
res += generer(etat, m+l, L1 + L2, jO, min(jmin, j1))
for (i2,j2) in L2:
etat[i2] [j2] = 0
etat[i1][j1] = 1
return res

def cptOminosBis(n):

etat = [[0 for j in range(n)] for j in range(n)]

res = 0

for j in range(n):
etat[0][j] =1
res += generer(etat, 0, [(0,j)], j, j)
etat[0][j] = 0

return res

